LaserA laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word laser is an anacronym that originated as an acronym for light amplification by stimulated emission of radiation. The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow. A laser differs from other sources of light in that it emits light that is coherent.
Laser linewidthLaser linewidth is the spectral linewidth of a laser beam. Two of the most distinctive characteristics of laser emission are spatial coherence and spectral coherence. While spatial coherence is related to the beam divergence of the laser, spectral coherence is evaluated by measuring the linewidth of laser radiation. The first human-made coherent light source was a maser. The acronym MASER stands for "Microwave Amplification by Stimulated Emission of Radiation". More precisely, it was the ammonia maser operating at 12.
Q-switchingQ-switching, sometimes known as giant pulse formation or Q-spoiling, is a technique by which a laser can be made to produce a pulsed output beam. The technique allows the production of light pulses with extremely high (gigawatt) peak power, much higher than would be produced by the same laser if it were operating in a continuous wave (constant output) mode. Compared to modelocking, another technique for pulse generation with lasers, Q-switching leads to much lower pulse repetition rates, much higher pulse energies, and much longer pulse durations.
Pulsed laserPulsed operation of lasers refers to any laser not classified as continuous wave, so that the optical power appears in pulses of some duration at some repetition rate. This encompasses a wide range of technologies addressing a number of different motivations. Some lasers are pulsed simply because they cannot be run in continuous mode. In other cases the application requires the production of pulses having as large an energy as possible.
Frequency combIn optics, a frequency comb is a laser source whose spectrum consists of a series of discrete, equally spaced frequency lines. Frequency combs can be generated by a number of mechanisms, including periodic modulation (in amplitude and/or phase) of a continuous-wave laser, four-wave mixing in nonlinear media, or stabilization of the pulse train generated by a mode-locked laser. Much work has been devoted to this last mechanism, which was developed around the turn of the 21st century and ultimately led to one half of the Nobel Prize in Physics being shared by John L.
Carbon-dioxide laserThe carbon-dioxide laser (CO2 laser) was one of the earliest gas lasers to be developed. It was invented by Kumar Patel of Bell Labs in 1964 and is still one of the most useful types of laser. Carbon-dioxide lasers are the highest-power continuous-wave lasers that are currently available. They are also quite efficient: the ratio of output power to pump power can be as large as 20%. The CO2 laser produces a beam of infrared light with the principal wavelength bands centering on 9.6 and 10.6 micrometers (μm).
Laser constructionA laser is constructed from three principal parts: An energy source (usually referred to as the pump or pump source), A gain medium or laser medium, and Two or more mirrors that form an optical resonator. The pump source is the part that provides energy to the laser system. Examples of pump sources include electrical discharges, flashlamps, arc lamps, light from another laser, chemical reactions and even explosive devices. The type of pump source used principally depends on the gain medium, and this also determines how the energy is transmitted to the medium.
Fabry–Pérot interferometerIn optics, a Fabry–Pérot interferometer (FPI) or etalon is an optical cavity made from two parallel reflecting surfaces (i.e.: thin mirrors). Optical waves can pass through the optical cavity only when they are in resonance with it. It is named after Charles Fabry and Alfred Perot, who developed the instrument in 1899. Etalon is from the French étalon, meaning "measuring gauge" or "standard". Etalons are widely used in telecommunications, lasers and spectroscopy to control and measure the wavelengths of light.
Laser surgeryLaser surgery is a type of surgery that uses a laser (in contrast to using a scalpel) to cut tissue. Examples include the use of a laser scalpel in otherwise conventional surgery, and soft-tissue laser surgery, in which the laser beam vaporizes soft tissue with high water content. Laser surgery is commonly used on the eye. Techniques used include LASIK, which is used to correct near and far-sightedness in vision, and photorefractive keratectomy, a procedure which permanently reshapes the cornea using an excimer laser to remove a small amount of the human tissue.
Stimulated emissionStimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron (or other excited molecular state), causing it to drop to a lower energy level. The liberated energy transfers to the electromagnetic field, creating a new photon with a frequency, polarization, and direction of travel that are all identical to the photons of the incident wave. This is in contrast to spontaneous emission, which occurs at a characteristic rate for each of the atoms/oscillators in the upper energy state regardless of the external electromagnetic field.