**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# WILD SOLUTIONS TO SCALAR EULER-LAGRANGE EQUATIONS

Abstract

. We study very weak solutions to scalar Euler-Lagrange equations associated with quadratic convex functionals. We investigate whether W1,1 solutions are necessarily W 1,2 Nash and Schauder applicable. We answer this question positively for a suitable class of functionals. This is an extension of Weyl's classical lemma for the Laplace equation to a wider class of equations under stronger regularity assumptions. Conversely, using convex integration, we show that outside this class of functionals, there exist W1,1 solutions of locally infinite energy to scalar Euler-Lagrange equations. In addition, we prove an intermediate result which permits the regularity of a W1,1 solution to be improved to W 1,2 suitable assumptions on the functional and solution.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (36)

Related publications (36)

Related MOOCs (15)

Ontological neighbourhood

Functional analysis

Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, inner product, norm, or topology) and the linear functions defined on these spaces and suitably respecting these structures. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining, for example, continuous or unitary operators between function spaces.

Minkowski functional

In mathematics, in the field of functional analysis, a Minkowski functional (after Hermann Minkowski) or gauge function is a function that recovers a notion of distance on a linear space. If is a subset of a real or complex vector space then the or of is defined to be the function valued in the extended real numbers, defined by where the infimum of the empty set is defined to be positive infinity (which is a real number so that would then be real-valued).

Functional (mathematics)

In mathematics, a functional (as a noun) is a certain type of function. The exact definition of the term varies depending on the subfield (and sometimes even the author). In linear algebra, it is synonymous with linear forms, which are linear mappings from a vector space into its field of scalars (that is, they are elements of the dual space ) In functional analysis and related fields, it refers more generally to a mapping from a space into the field of real or complex numbers.

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Weak solutions arise naturally in the study of the Navier-Stokes and Euler equations both from an abstract regularity/blow-up perspective and from physical theories of turbulence. This thesis studies the structure and size of singular set of such weak solu ...

We prove that under certain mild moment and continuity assumptions, the d-dimensional continuum Gaussian free field is the only stochastic process satisfying the usual domain Markov property and a scaling assumption. Our proof is based on a decomposition o ...

We generalize the fixed-point property for discrete groups acting on convex cones given by Monod in [23] to topological groups. At first, we focus on describing this fixed-point property from a functional point of view, and then we look at the class of gro ...