The principal objective of this thesis is the development of a palladium catalyst supported on woven fabrics of activated carbon fibers (ACF) for the reactions of hydrogenations in liquid phase and the design of multiphase reactors using the characteristics of these structures. This work was focused on Preparation, characterization and optimization of catalysts supported on the woven fabrics of activated carbon fibers; The intrinsic kinetics of the selective hydrogenation of 2-butylene-1,4-diol to 2-butyne-1,4-diol as model reaction; The comparison of the activity of our structured catalyst with that of commercial catalysts; Increase the catalyst concentration in the multiphase reactors with the design of a loop reactor containing a bubble column staged with the fiber fabrics supporting the catalyst, its characterization and the startup of this loop reactor which can operate in continuous or in batch mode. Chapter 4 presents the methods of manufacture of our palladium catalysts supported on woven structures of activated carbon fibers, their reproducibility and their homogeneous deposition. The characteristics of the support such as its handiness, its resistance to mechanical forces, the opening of its surface to liquid flow, its great specific surface area and its homogeneous distribution of micropores are defined there. The deposition of nanoparticules of active phase (0.5-5%mass) is characterized by metal surface obtained (280-87 m2/g), the dispersion of this surface (62.8-19.6%) and the average diameter of the nanoparticles (1.78-5.72 nm). The total degree of initial reduction (before reaction) was confirmed. Chapter 5 is devoted to the study of the reaction of selective hydrogenation of the 2-butyne-1,4-diol (B3) to 2-butylene-1,4-diol (B2) with a commercial palladium catalyst supported on activated carbon powder. A zero value even slightly negative was found for B3 partial order and equal to one for hydrogen. The activity obtained for this catalyst is large (37.1 mol(H2)/h gPd) but its initial selectivity is particularly low (SB3,0 = 76.8 %). Effect of support was tested and highlighted. Two supports (CaCO3 and Al2O3) gave reaction rates approximately half the size of those of the carbon support, but an initial selectivity close to 99 %. In chapter 6, selective hydrogenation in an autoclave with an agitator containing structured catalyst is tested. This reactor is first of all evaluated like a reactor working in kinetic mode for the selected reaction. Kinetics was studied and showed that the fibrous support does not change the orders of reaction compared to the commercial catalyst. Energy of activation of 30 kJ/mol was found in the studied configuration. A variation of the catalytic amount on woven structure was studied and gave a reaction rate of 19.4 (mol(H2)/h gPd) for an initial selectivity of 98 % for the best catalyst (Pd(2%)/ACF). The reuse of this catalyst with an in situ reactivation in hydrazine allowed a stabilization of the activ
Harald Brune, Hao Yin, Wei Fang