Group representationIn the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication. In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules.
Abstraction (computer science)In software engineering and computer science, abstraction is: The process of removing or generalizing physical, spatial, or temporal details or attributes in the study of objects or systems to focus attention on details of greater importance; it is similar in nature to the process of generalization; the creation of abstract concept-objects by mirroring common features or attributes of various non-abstract objects or systems of study – the result of the process of abstraction.