Gravity currents produced by full-depth lock-release of saline water into a fresh water tank are studied focusing on the influence of the initial density of the saline mixture in the lock and the bed roughness on gravity current kinematics. Temporal evolution of the current front position and front velocity are analysed and related to different phases of the current. Time–space evolution of current depth-averaged density and current height are assessed as well. Roughness of the channel bed plays an important role in the current kinematics, particularly in decreasing the front velocity due to extra drag at the bed. The analysis of Froude numbers, estimated with the initial and local reduced gravity and established with different length scales of the current, allow for the definition of the important variables and current dynamics of each phase of the current development.
Farhad Rachidi-Haeri, Marcos Rubinstein, Elias Per Joachim Le Boudec, Nicolas Mora Parra, Chaouki Kasmi, Emanuela Radici
Drazen Dujic, Renan Pillon Barcelos, Nikolina Djekanovic
Basil Duval, Stefano Coda, Joan Decker, Umar Sheikh, Luke Simons, Claudia Colandrea, Jean Arthur Cazabonne, Bernhard Sieglin, Gergely Papp