The identification of kinetic models is an important step for the monitoring, control and optimization of industrial processes. This is particularly the case for highly competitive business sectors such as chemical and pharmaceutical industries, where the current trend of changing markets and strong competition leads to a reduction in the process development costs [1]. Moreover, the PAT initiative of the FDA advocates a better understanding and control of manufacturing processes by the use of modern instrumental technologies and innovative software solutions [2]. Reaction systems can be represented by first-principles kinetic models that describe the time evolution of states – numbers of moles, temperature, volume, pressure – by means of conservation and constitutive equations of differential and algebraic nature. These models are designed to include all kinetic phenomena, whether physical or chemical, involved in the reaction systems. Generally, such kinetic phenomena include the dynamic effects of reactions (stoichiometry and reaction kinetics), transfer of species between phases (mass-transfer rates), and operating conditions (initial conditions as well as inlet and outlet flows). The identification of reaction and mass-transfer rates as well as the estimation of their corresponding rate parameters represents the main challenge in building first-principles models. The task of identification is commonly performed in one step via ‘simultaneous identification’, in which a dynamic model comprising all rate effects is postulated, and the corresponding model parameters are estimated by comparing the measured and modeled concentrations [3]. This procedure is repeated for all combinations of model candidates, and the combination with the best fit is usually selected. The main advantage of this identification method lies in its capability to model complex dynamic effects in a concomitant way and thus to generate enough constraints in the optimization problem so that indirect measurements such as spectroscopic and calorimetric data can be modeled without the use of a calibration step [4, 5]. However, the simultaneous approach can be computationally costly when several candidates are available for each dynamic effect. Furthermore, this method often leads to high parameter correlation with the consequence that any structural mismatch in the modeling of one part of the model can result in errors in all estimated parameters and, in addition, convergence problems can arise from a poor choice of initial guesses [6, 7]. As an alternative, the incremental approach decomposes the identification task into a set of sub-problems of lower complexity [8]. The approach consists in transforming the measured concentrations into decoupled rates or extents, which can then be modeled individually. When needed, prior to the modeling step, the missing or unmeasured states can be reconstructed using the computed rates or extents. In the ‘rated-based
Jan Sickmann Hesthaven, Niccolo' Discacciati
Fernando José Henriquez Barraza