A close look at many existing systems reveals their two- or multi-layer nature, where a number of coexisting networks interact and depend on each other. For instance, in the Internet, any application-level graph (such as a peer-to-peer network) is mapped on the underlying IP network that, in turn, is mapped on a mesh of optical fibers. This layered view sheds new light on the tolerance to errors and attacks of many complex systems. What is observed at a single layer does not necessarily reflect well the state of the entire system. On the contrary, a tiny, seemingly harmless disruption of one layer, may destroy a substantial or essential part of another layer, thus making the whole system useless in practice. In this thesis we consider such two-layer systems. We model them by two graphs at two different layers, where the upper-layer (or logical) graph is mapped onto the lower-layer (physical) graph. Our main goals are the following. First, we study the robustness to failures of existing large-scale two-layer systems. This brings us some valuable insights into the problem, e.g., by identifying common weak points in such systems. Fortunately, these two-layer problems can often be effectively alleviated by a careful system design. Therefore, our second major goal is to propose new designs that increase the robustness of two-layer systems. This thesis is organized in three main parts, where we focus on different examples and aspects of the two-layer system. In the first part, we turn our attention to the existing large-scale two-layer systems, such as peer-to-peer networks, railway networks and the human brain. Our main goal is to study the vulnerability of these systems to random errors and targeted attacks. Our simulations show that (i) two-layer systems are much more vulnerable to errors and attacks than they appear from a single layer perspective, and (ii) attacks are much more harmful than errors, especially when the logical topology is heterogeneous. These results hold across all studied systems. A natural next step consists in improving the failure robustness of two-layer systems. In particular, in the second part of this thesis, we consider the IP/WDM optical networks, where an IP backbone network is mapped on a mesh of optical fibers. The problem lies in designing a survivable mapping, such that no single physical failure disconnects the logical topology. This is an NP-complete problem. We introduce a new concept of piecewise survivability, which makes the problem much easier in practice. This leads us to an efficient and scalable algorithm called SMART, which finds a survivable mapping much faster (often by orders of magnitude) than the other approaches proposed to date. Moreover, the formal analysis of SMART allows us to prove that a given survivable mapping does or does not exist. Finally, this approach helps us to find vulnerable areas in the system, and to effectively reinforce them, e.g., by adding new links. In the third part of this t
Verónica del Carmen Estrada Galiñanes, Arman Babaei
Christian Leinenbach, Elyas Ghafoori, Irene Ferretto, Mahbod Golrang, Mahshid Memarian
Martin Vetterli, Yves Bellouard, Ruben Ricca