Phase spaceIn dynamical systems theory and control theory, a phase space or state space is a space in which all possible "states" of a dynamical system or a control system are represented, with each possible state corresponding to one unique point in the phase space. For mechanical systems, the phase space usually consists of all possible values of position and momentum variables. It is the direct product of direct space and reciprocal space. The concept of phase space was developed in the late 19th century by Ludwig Boltzmann, Henri Poincaré, and Josiah Willard Gibbs.
Foundation modelsA foundation model (also called base model) is a large machine learning (ML) model trained on a vast quantity of data at scale (often by self-supervised learning or semi-supervised learning) such that it can be adapted to a wide range of downstream tasks. Foundation models have helped bring about a major transformation in how artificial intelligence (AI) systems are built, such as by powering prominent chatbots and other user-facing AI.