This thesis investigates the magnetic properties of single atoms and molecules adsorbed on thin magnesium oxide decoupling layers, grown on a silver single crystal. To address these systems experimentally, we use a low temperature scanning tunneling micros ...
The aim of this work is to study homogeneous stable solutions to the thin (or fractional) one -phase free boundary problem. The problem of classifying stable (or minimal) homogeneous solutions in dimensions n >= 3 is completely open. In this context, axial ...
Topological Weyl semimetals represent a novel class of nontrivial materials, where band crossings with linear dispersions take place at generic momenta across reciprocal space. These crossings give rise to low -energy properties akin to those of Weyl fermi ...
LiReF4 ("Re" stands for the rare-earth element) and their doped derivatives have long been recognized as a family of compounds that exhibit rich phenomena in quantum magnetism, drawing wide attention to them from both fundamental researchers and industr ...
Phase transitions in non-Hermitian systems are at the focus of cutting edge theoretical and experimental research. On the one hand, parity-time- (PT-) and anti-PT-symmetric physics have gained ever-growing interest, due to the existence of non-Hermitian sp ...
Transition metal oxides represent a class of materials displaying very unusual electronic, structural and magnetic properties. They are extremely interesting, both from a technological and fundamental point of view. The most important characteristic of the ...
The nature of the gap observed at the zone border in the spin excitation spectrum of CrI3 quasitwo-dimensional single crystals is still controversial. We perform first-principles calculations based on time-dependent density functional perturbation theory, ...
The magnetic propertiesof transition-metal ions aregenerallydescribed by the atomic spins of the ions and their exchange coupling.The orbital moment, usually largely quenched due the ligand field,is then seen as a perturbation. In such a scheme, S = 1/2 io ...
Recent neutron-diffraction experiments in honeycomb CrI3 quasi-2D ferromagnets have evinced the existence of a gap at the Dirac point in their spin-wave spectra. The existence of this gap has been attributed to strong in-plane Dzyaloshinskii-Moriya or Kita ...
Combining superconducting resonators and quantum dots has triggered tremendous progress in quantum information, however, attempts at coupling a resonator to even charge parity spin qubits have resulted only in weak spin-photon coupling. Here, we integrate ...