Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We investigate the statistical and algorithmic properties of random neural-network generative priors in a simple inference problem: spiked-matrix estimation. We establish a rigorous expression for the performance of the Bayes-optimal estimator in the high- ...
While the quality of GAN image synthesis has improved tremendously in recent years, our ability to control and condition the output is still limited. Focusing on StyleGAN, we introduce a simple and effective method for making local, semantically-aware edit ...
In learning from demonstrations, many generative models of trajectories make simplifying assumptions of independence. Correctness is sacrificed in the name of tractability and speed of the learning phase. The ignored dependencies, which are often the kinem ...
A recent line of work focused on making adversarial training computationally efficient for deep learning models. In particular, Wong et al. (2020) showed that ℓ∞-adversarial training with fast gradient sign method (FGSM) can fail due to a phenomenon called ...
This paper describes our participation in the shared evaluation campaign of MexA3T 2020. Our main goal wasto evaluate a Supervised Autoencoder (SAE) learning algorithm in text classification tasks. For our experiments,we used three different sets of featur ...
This paper considers the problem of enhancing user privacy in common machine learning development tasks, such as data annotation and inspection, by substituting the real data with samples form a generative adversarial network. We propose employing Bayesian ...
First-quantized deep neural network techniques are developed for analyzing strongly coupled fermionic systems on the lattice. Using a Slater-Jastrow-inspired ansatz which exploits deep residual networks with convolutional residual blocks, we approximately ...
Over the past few years, there have been fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. The amount of annotated data drastically increased and supervised deep discriminative models exceed ...
Nonconvex minimax problems appear frequently in emerging machine learning applications, such as generative adversarial networks and adversarial learning. Simple algorithms such as the gradient descent ascent (GDA) are the common practice for solving these ...
In this thesis, we assess a new framework called UMIN on a data-driven optimization problem. Such a problem happens recurrently in real life and can quickly become dicult to model when the input has a high dimensionality as images for instance. From the ar ...