This thesis presents the development, construction, and benchmark of an experimental platform that combines cold fermionic 6Li atoms with locally controllable light-matter interactions. To enable local control, a new device, the cavity-microscope, was crea ...
Low-level light detection with high spatial and timing accuracy is a growing area of interest by virtue of applications such as light detection and ranging (LiDAR), biomedical imaging, time-resolved Raman spectroscopy, and quantum applications. Single-phot ...
Quantum optics studies how photons interact with other forms of matter, the understanding of which was crucial for the development of quantum mechanics as a whole. Starting from the photoelectric effect, the quantum property of light has led to the develop ...
Infrared and Raman spectroscopies are ubiquitous techniques employed in many experimental laboratories, thanks to their fast and non-destructive nature able to capture materials' features as spectroscopic fingerprints. Nevertheless, these measurements freq ...
Over the past decade, quantum photonics platforms aiming at harnessing the fundamental properties of single particles, such as quantum superposition and quantum entanglement, have flourished. In this context, single-photon emitters capable of operating at ...
Applications demanding imaging at low-light conditions at near-infrared (NIR) and short-wave infrared (SWIR) wavelengths, such as quantum information science, biophotonics, space imaging, and light detection and ranging (LiDAR), have accelerated the develo ...
Excitons play an essential role in the optical response of two-dimensional materials. These are bound states showing up in the band gaps of many-body systems and are conceived as quasiparticles formed by an electron and a hole. By performing real-time simu ...
Our understanding of quantum materials is commonly based on precise determinations of their electronic spectrum by spectroscopic means, most notably angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy. Both require atomicall ...
Protein ubiquitin in its +7 charge state microhydrated by 5 and 10 water molecules has been interrogated in the gas phase by cold ion UV/IR spectroscopy. The complexes were formed either by condensing water onto the unfolded bare proteins in a temperature- ...
This thesis uses femtosecond laser spectroscopy in studying strong correlation in condensed matters that are pertinent to future technology: a wide bandgap perovskite and a quantum material, with the employment of ultrafast time-resolved spectroscopy in th ...