The PhD thesis deals with the optimization of the reaction calorimetry technique to monitor chemical reactions in supercritical fluids. The aim is to develop this thermal analysis technique to monitor the heat released by a chemical reaction in a high pressure reactor and consequently discuss upon the reaction evolution. The experimental equipment used was previously developed in the group of chemical and physical safety at the EPFL. Additionally, a mass flow meter was installed during this thesis to measure the quantity of supercritical fluid inserted in the reactor. Initially, the core of the technique, meaning the heat flow equation, was examined in a term-by-term analysis to adapt and optimize each term for supercritical reaction systems. For this analysis a model reaction was chosen, namely the free-radical dispersion polymerization of methyl methacrylate in supercritical carbon dioxide, and a set of conditions was set as a reference. The particularities linked to the supercritical nature of the solvent were taken into consideration and more precisely the fact that the solvent occupies the entire available reactor volume. As a result it was found that every reactor part has to be thermally controlled and that special caution has to be paid on the estimation of the overall heat transfer coefficient between the reaction mixture and the temperature regulating fluid running in the reactor jacket and on the estimation of the specific heat capacity of the reaction mixture. Furthermore, the injection phase of the additional reactants, according to the reaction protocol, was found to be subject to considerable calorimetric errors; therefore an optimized injection pattern was designed to minimize the undesired temperature oscillations during this phase. The second step of the thesis consists of the discussion on the reaction evolution based on the optimized results obtained. First a direct comparison is presented between the calorimetric results before and after the analysis to highlight the points were significant improvements were introduced, mainly in terms of accuracy and reproducibility of the results. Then the discussion focuses on the nucleation phase of the polymer particles, where the data show that the reaction takes place almost exclusively in the continuous phase. This conclusion is also found to be in very good agreement with the results of other experimental techniques. Further, the role of the pressure on the reaction evolution was examined through a series of experiments, based on a small reaction deceleration observed, and was found to have a drastic effect on the creation of stable dispersion conditions. A key parameter in this investigation was the partitioning of the solvent, the monomer and the produced polymer in the two reaction phases. The latter also helped in the formulation of an explanation for the measured pressure profiles. Finally, the reaction heat rate data of the previous tests were used to discuss some safety aspect
Andreas Pautz, Vincent Pierre Lamirand, Oskari Ville Pakari
Andreas Pautz, Vincent Pierre Lamirand, Oskari Ville Pakari, Pavel Frajtag, Tom Mager