We discuss equivariance for linear liftings of measurable functions. Existence is established when a transformation group acts amenably, as e.g. the Mobius group of the projective line. Since the general proof is very simple but not explicit, we also provi ...
A framework is introduced for the study of general Radon shape diffusions, that is, shape diffusions induced by projections of randomly rotating shapes. This is done via a convenient representation of unoriented Radon shape diffusions in (unoriented) D.G. ...
This work is dedicated to developing algebraic methods for channel coding. Its goal is to show that in different contexts, namely single-antenna Rayleigh fading channels, coherent and non-coherent MIMO channels, algebraic techniques can provide useful tool ...
We prove that the norm of the Euler class E for flat vector bundles is 2−n (in even dimension n, since it vanishes in odd dimension). This shows that the Sullivan-Smillie bound considered by Gromov and Ivanov-Turaev is sharp. We construc ...
We explore a few algebraic and geometric structures, through certain questions posed by modern cryptography. We focus on the cases of discrete logarithms in finite fields of small characteristic, the structure of isogeny graphs of ordinary abelian varietie ...
We investigate correspondence functors, namely the functors from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. They have various specific properties which do not hold for other types of functor ...
K-Theory was originally defined by Grothendieck as a contravariant functor from a subcategory of schemes to abelian groups, known today as K0. The same kind of construction was then applied to other fields of mathematics, like spaces and (not necessarily c ...
Elliptic curve cryptosystems (ECCs) are utilised as an alternative to traditional public-key cryptosystems, and are more suitable for resource-limited environments because of smaller parameter size. In this study, the authors carry out a thorough investiga ...