Classical Serre-Tate theory describes deformations of ordinary abelian varieties. It implies that every such variety has a canonical lift to characteristic zero and equips the base of its universal deformation with a Frobenius lifting and canonical multipl ...
Abelian varieties are fascinating objects, combining the fields of geometry and arithmetic. While the interest in abelian varieties has long time been of purely theoretic nature, they saw their first real-world application in cryptography in the mid 1980's ...
We explore a few algebraic and geometric structures, through certain questions posed by modern cryptography. We focus on the cases of discrete logarithms in finite fields of small characteristic, the structure of isogeny graphs of ordinary abelian varietie ...
We use Masser's counting theorem to prove a lower bound for the canonical height in powers of elliptic curves. We also prove the Galois case of the elliptic Lehmer problem, combining Kummer theory and Masser's result with bounds on the rank and torsion of ...
Fix a prime number l. Graphs of isogenies of degree a power of l are well-understood for elliptic curves, but not for higher-dimensional abelian varieties. We study the case of absolutely simple ordinary abelian varieties over a finite field. We analyse gr ...
Let R be a semilocal Dedekind domain. Under certain assumptions, we show that two (not necessarily unimodular) hermitian forms over an R-algebra with involution, which are rationally isomorphic and have isomorphic semisimple coradicals, are in fact isomorp ...
We prove formulas for power moments for point counts of elliptic curves over a finite field k such that the groups of k-points of the curves contain a chosen subgroup. These formulas express the moments in terms of traces of Hecke operators for certain con ...
Nowadays, one area of research in cryptanalysis is solving the Discrete Logarithm Problem (DLP) in finite groups whose group representation is not yet exploited. For such groups, the best one can do is using a generic method to attack the DLP, the fastest ...
We prove a lower bound on the number of ordinary conics determined by a finite point set in R-2. An ordinary conic for S subset of R-2 is a conic that is determined by five points of S and contains no other points of S. Wiseman and Wilson proved the Sylves ...
We prove that Hausel’s formula for the number of rational points of a Nakajima quiver variety over a finite field also holds in a suitable localization of the Grothendieck ring of varieties. In order to generalize the arithmetic harmonic analysis in his pr ...