Expression de forme ferméeEn mathématiques, une expression de forme fermée (également appelée expression fermée, expression de forme close, expression close ou expression explicite) est une expression mathématique pouvant s'obtenir par une combinaison de nombres ou de fonctions et d'opérations de référence. On emploie parfois le terme formule à la place du terme expression : formule de forme fermée, formule explicite, formule de forme close, etc. Le plus souvent, cette terminologie s'emploie pour des solutions d'équations ou de systèmes d'équations.
Multigrid methodIn numerical analysis, a multigrid method (MG method) is an algorithm for solving differential equations using a hierarchy of discretizations. They are an example of a class of techniques called multiresolution methods, very useful in problems exhibiting multiple scales of behavior. For example, many basic relaxation methods exhibit different rates of convergence for short- and long-wavelength components, suggesting these different scales be treated differently, as in a Fourier analysis approach to multigrid.
Fonction gamma incomplèteEn analyse mathématique, il existe plusieurs définitions de fonctions gamma incomplètes : pour un paramètre complexe a de partie réelle strictement positive, La dérivée de la fonction gamma incomplète Γ(a, x) par rapport à x est l'opposée de l'intégrande de sa définition intégrale : La dérivée par rapport au paramètre a est donnée par et la dérivée seconde par où la fonction T(m, a, x) est un cas particulier de la Ce cas particulier possède des propriétés internes de fermeture qui lui sont propres parce qu'
Haute fréquenceLa haute fréquence désigne un spectre de fréquences d'ondes électromagnétiques modulées dont la nature diffère en fonction du domaine auquel il s'applique. Le présent article traite du domaine des « hautes fréquences » (high frequencies en anglais, abrégé en HF) en radiocommunication qui désigne les ondes radio dont la fréquence est comprise entre et . Elles sont également nommées « ondes décamétriques » ou « ondes courtes » , en fonction de leur longueur d'onde comprise entre 10 et .
Fonction analytiquevignette|Tracé du module de la fonction gamma (son prolongement analytique) dans le plan complexe. En mathématiques, et plus précisément en analyse, une fonction analytique est une fonction d'une variable réelle ou complexe qui est développable en série entière au voisinage de chacun des points de son domaine de définition, c'est-à-dire que pour tout de ce domaine, il existe une suite donnant une expression de la fonction, valable pour tout assez proche de , sous la forme d'une série convergente : Toute fonction analytique est dérivable de dérivée analytique, ce qui implique que toute fonction analytique est indéfiniment dérivable, mais la réciproque est fausse en analyse réelle.
Propagation des ondes radioLes ondes radioélectriques ou ondes hertziennes sont des ondes électromagnétiques qui se propagent de deux façons : dans l'espace libre (propagation rayonnée, autour de la Terre par exemple) dans des lignes (propagation guidée, dans un câble coaxial ou un guide d'ondes) Le domaine des fréquences des ondes radio s'étend de à . Pour la partie théorique, on se reportera à l'article Établissement de l'équation de propagation à partir des équations de Maxwell .
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Nombre complexeEn mathématiques, l'ensemble des nombres complexes est actuellement défini comme une extension de l'ensemble des nombres réels, contenant en particulier un nombre imaginaire noté i tel que i = −1. Le carré de (−i) est aussi égal à −1 : (−i) = −1. Tout nombre complexe peut s'écrire sous la forme x + i y où x et y sont des nombres réels. Les nombres complexes ont été progressivement introduit au par l’école mathématique italienne (Jérôme Cardan, Raphaël Bombelli, Tartaglia) afin d'exprimer les solutions des équations du troisième degré en toute généralité par les formules de Cardan, en utilisant notamment des « nombres » de carré négatif.
Intégration (mathématiques)En mathématiques, l'intégration ou calcul intégral est l'une des deux branches du calcul infinitésimal, l'autre étant le calcul différentiel. Les intégrales sont utilisées dans de multiples disciplines scientifiques notamment en physique pour des opérations de mesure de grandeurs (longueur d'une courbe, aire, volume, flux) ou en probabilités. Ses utilités pluridisciplinaires en font un outil scientifique fondamental. C'est la raison pour laquelle l'intégration est souvent abordée dès l'enseignement secondaire.
Atome d'hydrogèneL'atome d'hydrogène est le plus simple de tous les atomes du tableau périodique, étant composé d'un proton et d'un électron. Il correspond au premier élément de la classification périodique. La compréhension des interactions au sein de cet atome au moyen de la théorie quantique fut une étape importante qui a notamment permis de développer la théorie des atomes à N électrons. C'est pour comprendre la nature de son spectre d'émission, discret, alors que la théorie classique prévoyait un spectre continu, que Niels Bohr a introduit en 1913 un premier modèle quantique de l'atome (cf.