Corps finiEn mathématiques et plus précisément en algèbre, un corps fini est un corps commutatif qui est par ailleurs fini. À isomorphisme près, un corps fini est entièrement déterminé par son cardinal, qui est toujours une puissance d'un nombre premier, ce nombre premier étant sa caractéristique. Pour tout nombre premier p et tout entier non nul n, il existe un corps de cardinal pn, qui se présente comme l'unique extension de degré n du corps premier Z/pZ.
Coronal planeThe coronal plane (also known as the frontal plane) is an anatomical plane that divides the body into dorsal and ventral sections. It is perpendicular to the sagittal and transverse planes. The coronal plane is an example of a longitudinal plane. For a human, the mid-coronal plane would transect a standing body into two halves (front and back, or anterior and posterior) in an imaginary line that cuts through both shoulders.
Translation planeIn mathematics, a translation plane is a projective plane which admits a certain group of symmetries (described below). Along with the Hughes planes and the Figueroa planes, translation planes are among the most well-studied of the known non-Desarguesian planes, and the vast majority of known non-Desarguesian planes are either translation planes, or can be obtained from a translation plane via successive iterations of dualization and/or derivation. In a projective plane, let P represent a point, and l represent a line.
Inégalité de ChernoffEn théorie des probabilités, l'inégalité de Chernoff permet de majorer la queue d'une loi de probabilité, c'est-à-dire qu'elle donne une valeur maximale de la probabilité qu'une variable aléatoire dépasse une valeur fixée. On parle également de borne de Chernoff. Elle est nommée ainsi en l'honneur du mathématicien Herman Chernoff. Elle est comparable à l'inégalité de Markov mais donne une borne exponentielle. Il existe de nombreux énoncés, et de nombreux cas particuliers.
Géométrie finieUne géométrie finie est un système géométrique dont les points sont en nombre fini. La géométrie euclidienne usuelle n'est pas finie, une droite euclidienne possédant une infinité de points. Une géométrie basée sur les images affichées sur un écran d'ordinateur, où les pixels sont considérés comme des points, serait une géométrie finie. Bien qu'il existe de nombreux systèmes que l'on pourrait appeler des géométries finies, on porte principalement l'attention sur les espaces projectifs et affines finis en raison de leur régularité et de leur simplicité.
Cage (théorie des graphes)En théorie des graphes, une cage est un graphe régulier minimal pour une maille donnée. Plus précisément, une (r,g)-cage est un graphe régulier minimal de degré r et de maille g. Quand le terme de g-cage est employé, il s'agit en fait d'une cage cubique, c'est-à-dire d'une (3,g)-cage. Un graphe degré-un n'a pas de cycle, et un graphe degré-deux connexe a une circonférence égale à son nombre de sommets, donc les cages ne présentent un intérêt que pour r ≥ 3.
Anneau finiEn mathématiques, un anneau fini est un anneau qui a un nombre fini d'éléments. Chaque corps fini est un exemple d’anneau fini, et la partie additive de chaque anneau fini est un exemple de groupe fini et abélien, mais la notion même d’anneaux finis a une histoire plus récente. Comme les anneaux sont plus rigides que les groupes, la classification des anneaux finis est plus simple que celle des groupes finis.