In recent years, optical gas detectors based on a tunable diode laser absorption spectrometer has become more and more important for monitoring trace gases in atmospheric, medical, and industrial processes. In the medical field, blood gases, essentially pO2 and pCO2, are vital parameters for patient respiratory status monitoring. Typically, hypoxaemia or hypercapnia can be very harmful, especially for neonates, and requires continuous monitoring for rapid clinical intervention. Transcutaneous blood gases, permeating through the skin, can be continuously measured in patients by electrochemical sensors applied to the surface of the skin. These sensors suffer specific instability and must be re-calibrated. For this reason, the present thesis explores a new concept of gas sensors, applying light absorption at the surface of an integrated optics waveguide and using the advantages of a modulated spectroscopy technique for sensitivity and selectivity enhancement. In other words, the present thesis sets a mathematical model and demonstrates experimentally a new concept of evanescent wave gas sensing based on modulation spectroscopy. The field of application considered in this book is restricted to gas detection, however the concept can also be applied to the detection of liquids. In particular, we demonstrate the potential applicability of the concept to transcutaneous blood gas monitoring, and especially carbon dioxide monitoring. The system transfer function modelization of the concept includes carbon dioxide absorption spectrum in the near-infrared region (1.6µm), laser diode modulation spectroscopy assuming optical frequency modulation (FM) as well as intensity modulation (IM) induced by current modulation, and integrated optics sensor-head transmission. The modelization evidences that the silicon nitride technology has the advantage of: high evanescent wave sensitivity (8% for the selected TE mode), low propagation loss, possibility of strong curvatures for miniaturization and availability of fiberto- waveguide mode matching technique (taper). In the modelization, we evidence that the optimal waveguide length equals the inverse of the propagation loss which is mainly limited by the waveguide scattering. Also, we demonstrate that the implementation of a fiber-to-waveguide mode matching taper at both waveguide ends, drastically decreases the resonance limitation of the system resolution. Experimentally, the transfer function of the concept is validated and characterized based on a free-space modulation spectroscopy setup whose performance, in terms of second harmonic resolution, is first measured at 3.55 · 10-6 1/√Hz corresponding to 0.275 mmHg/√Hz CO2 partial pressure. In the chosen region of 200-400MHz of frequency modulation, we confirm that the 1/f-noise is negligible and the dominating amplifier noise can be approximated by the thermal noise. In the case of high insertion loss and short interaction length the interferometric noise (or etalon-effe