Modèle linéaire généraliséEn statistiques, le modèle linéaire généralisé (MLG) souvent connu sous les initiales anglaises GLM est une généralisation souple de la régression linéaire. Le GLM généralise la régression linéaire en permettant au modèle linéaire d'être relié à la variable réponse via une fonction lien et en autorisant l'amplitude de la variance de chaque mesure d'être une fonction de sa valeur prévue, en fonction de la loi choisie.
Valeur pvignette|redresse=1.5|Illustration de la valeur-p. X désigne la loi de probabilité de la statistique de test et z la valeur calculée de la statistique de test. Dans un test statistique, la valeur-p (en anglais p-value pour probability value), parfois aussi appelée p-valeur, est la probabilité pour un modèle statistique donné sous l'hypothèse nulle d'obtenir une valeur au moins aussi extrême que celle observée. L'usage de la valeur-p est courant dans de nombreux domaines de recherche comme la physique, la psychologie, l'économie et les sciences de la vie.
Ondelette de HaarL'ondelette de Haar, ou fonction de Rademacher, est une ondelette créée par Alfréd Haar en 1909. On considère que c'est la première ondelette connue. Il s'agit d'une fonction constante par morceaux, ce qui en fait l'ondelette la plus simple à comprendre et à implémenter. L'ondelette de Haar peut être généralisée par ce qu'on appelle le système de Haar. La fonction-mère des ondelettes de Haar est une fonction constante par morceaux : La fonction d'échelle associée est alors une fonction porte : Le système de Haar est une suite de fonctions continues par morceaux, appartenant à pour .
Modèle linéairevignette|Données aléatoires sous forme de points, et leur régression linéaire. Un modèle linéaire multivarié est un modèle statistique dans lequel on cherche à exprimer une variable aléatoire à expliquer en fonction de variables explicatives X sous forme d'un opérateur linéaire. Le modèle linéaire est donné selon la formule : où Y est une matrice d'observations multivariées, X est une matrice de variables explicatives, B est une matrice de paramètres inconnus à estimer et U est une matrice contenant des erreurs ou du bruit.
Analyse séquentielleEn statistique, l'analyse séquentielle, ou test d'hypothèse séquentiel, est une analyse statistique où la taille de l'échantillon n'est pas fixée à l'avance. Plutôt, les données sont évaluées au fur et à mesure qu'elles sont recueillies, et l'échantillonnage est arrêté selon une règle d'arrêt prédéfinie, dès que des résultats significatifs sont observés. Une conclusion peut ainsi parfois être atteinte à un stade beaucoup plus précoce que ce qui serait possible avec des tests d'hypothèse ou des estimations plus classiques, à un coût financier ou humain par conséquent inférieur.
False positives and false negativesA false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition (such as a disease when the disease is not present), while a false negative is the opposite error, where the test result incorrectly indicates the absence of a condition when it is actually present. These are the two kinds of errors in a binary test, in contrast to the two kinds of correct result (a and a ).
Modèle linéairevignette|Données aléatoires sous forme de points, et leur régression linéaire. Un modèle linéaire multivarié est un modèle statistique dans lequel on cherche à exprimer une variable aléatoire à expliquer en fonction de variables explicatives X sous forme d'un opérateur linéaire. Le modèle linéaire est donné selon la formule : où Y est une matrice d'observations multivariées, X est une matrice de variables explicatives, B est une matrice de paramètres inconnus à estimer et U est une matrice contenant des erreurs ou du bruit.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Generalized linear mixed modelIn statistics, a generalized linear mixed model (GLMM) is an extension to the generalized linear model (GLM) in which the linear predictor contains random effects in addition to the usual fixed effects. They also inherit from GLMs the idea of extending linear mixed models to non-normal data. GLMMs provide a broad range of models for the analysis of grouped data, since the differences between groups can be modelled as a random effect. These models are useful in the analysis of many kinds of data, including longitudinal data.
Cortex visuelLe occupe le lobe occipital du cerveau et est chargé de traiter les informations visuelles. Le cortex visuel couvre le lobe occipital, sur les faces latérales et internes, et empiète sur le lobe pariétal et le lobe temporal. L'étude du cortex visuel en neurosciences a permis de le découper en une multitude de sous-régions fonctionnelles (V1, V2, V3, V4, MT) qui traitent chacune ou collectivement des multiples propriétés des informations provenant des voies visuelles (formes, couleurs, mouvements).