Minimal idealIn the branch of abstract algebra known as ring theory, a minimal right ideal of a ring R is a non-zero right ideal which contains no other non-zero right ideal. Likewise, a minimal left ideal is a non-zero left ideal of R containing no other non-zero left ideals of R, and a minimal ideal of R is a non-zero ideal containing no other non-zero two-sided ideal of R . In other words, minimal right ideals are minimal elements of the partially ordered set (poset) of non-zero right ideals of R ordered by inclusion.
Cryptographie post-quantiqueLa cryptographie post-quantique est une branche de la cryptographie visant à garantir la sécurité de l'information face à un attaquant disposant d'un calculateur quantique. Cette discipline est distincte de la cryptographie quantique, qui vise à construire des algorithmes cryptographiques utilisant des propriétés physiques, plutôt que mathématiques, pour garantir la sécurité. En l'effet, les algorithmes quantiques de Shor, de Grover et de Simon étendent les capacités par rapport à un attaquant ne disposant que d'un ordinateur classique.
Ideal theoryIn mathematics, ideal theory is the theory of ideals in commutative rings. While the notion of an ideal exists also for non-commutative rings, a much more substantial theory exists only for commutative rings (and this article therefore only considers ideals in commutative rings.) Throughout the articles, rings refer to commutative rings. See also the article ideal (ring theory) for basic operations such as sum or products of ideals.
Idéal fractionnairevignette|Richard Dedekind donne en 1876 la définition d'idéal fractionnaire. En mathématiques, et plus précisément en théorie des anneaux, un idéal fractionnaire est une généralisation de la définition d'un idéal. Ce concept doit son origine à la théorie algébrique des nombres. Pour résoudre certaines équations diophantiennes, cette théorie utilise des anneaux d'entiers généralisant celui des entiers relatifs.