Ensemble infiniEn mathématiques, plus précisément en théorie des ensembles, un ensemble infini est un ensemble qui n'est pas fini, c'est-à-dire qu'il n'y a aucun moyen de « compter » les éléments de cet ensemble à l'aide d'un ensemble borné d'entiers. Un ensemble en bijection avec un ensemble infini est donc infini. Tout ensemble contenant un ensemble dénombrable est infini. Dans la théorie de Zermelo (Z), l'axiome de l'infini permet de construire l'ensemble N des entiers naturels, qui est alors un ensemble infini.
Mixed-member proportional representationMixed-member proportional representation (MMP or MMPR) is a mixed electoral system in which votes are cast for both local elections and also for overall party vote tallies, which are used to allocate additional members to produce or deepen overall proportional representation. In some MMP systems, voters get two votes: one to decide the representative for their single-seat constituency, and one for a political party. In Denmark and others, the single vote cast by the voter is used for both the local election (in a multi-member or single-seat district), and for the overall top-up.
Mixed-member majoritarian representationMixed member majoritarian representation (MMM) is type of a mixed electoral system combining majoritarian and proportional methods, where the disproportional results of the majoritarian side of the system prevail over the proportional component. Mixed member majoritarian systems are therefore also as a type of semi-proportional representation, and are usually contrasted with mixed-member proportional representation (MMP) which aims to provide proportional representation via additional compensation ("top-up") seats.
Nombre ordinalvignette|Spirale représentant les nombres ordinaux inférieurs à ωω. En mathématiques, on appelle nombre ordinal un objet permettant de caractériser le type d'ordre d'un ensemble bien ordonné quelconque, tout comme en linguistique, les mots premier, deuxième, troisième, quatrième, etc. s'appellent des adjectifs numéraux ordinaux, et servent à préciser le rang d'un objet dans une collection, ou l'ordre d'un événement dans une succession.
ApprentissageL’apprentissage est un ensemble de mécanismes menant à l'acquisition de savoir-faire, de savoirs ou de connaissances. L'acteur de l'apprentissage est appelé apprenant. On peut opposer l'apprentissage à l'enseignement dont le but est de dispenser des connaissances et savoirs, l'acteur de l'enseignement étant l'enseignant.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Scikit-learnScikit-learn est une bibliothèque libre Python destinée à l'apprentissage automatique. Elle est développée par de nombreux contributeurs notamment dans le monde académique par des instituts français d'enseignement supérieur et de recherche comme Inria. Elle propose dans son framework de nombreuses bibliothèques d’algorithmes à implémenter, clé en main. Ces bibliothèques sont à disposition notamment des data scientists. Elle comprend notamment des fonctions pour estimer des forêts aléatoires, des régressions logistiques, des algorithmes de classification, et les machines à vecteurs de support.
Modèle entité-associationvignette|Un artiste peut jouer une chanson.|258x258px Le modèle entité-association (MEA) (le terme « modèle-entité-relation » est une traduction erronée largement répandue), ou diagramme entité-association ou en anglais « entity-relationship diagram », abrégé en ERD, est un modèle de données ou diagramme pour des descriptions de haut niveau de modèles conceptuels de données. Il a été conçu par Peter Chen dans les années 1970 afin de fournir une notation unifiée pour représenter les informations gérées par les systèmes de gestion de bases de données de l'époque.
Gradient boostingGradient boosting is a machine learning technique used in regression and classification tasks, among others. It gives a prediction model in the form of an ensemble of weak prediction models, i.e., models that make very few assumptions about the data, which are typically simple decision trees. When a decision tree is the weak learner, the resulting algorithm is called gradient-boosted trees; it usually outperforms random forest.