A method for optimizing at least one of a geometry, an implantation procedure, and/or stimulation protocol of one or more electrodes for an electrical stimulation of a target structure in a nervous system of a living being by a computer device, the method ...
In this paper, we present a spatial branch and bound algorithm to tackle the continuous pricing problem, where demand is captured by an advanced discrete choice model (DCM). Advanced DCMs, like mixed logit or latent class models, are capable of modeling de ...
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
Traditional competitive markets do not account for negative externalities; indirect costs that some participants impose on others, such as the cost of over-appropriating a common-pool resource (which diminishes future stock, and thus harvest, for everyone) ...
Within the context of contemporary machine learning problems, efficiency of optimization process depends on the properties of the model and the nature of the data available, which poses a significant problem as the complexity of either increases ad infinit ...
We study an energy market composed of producers who compete to supply energy to different markets and want to maximize their profits. The energy market is modeled by a graph representing a constrained power network where nodes represent the markets and lin ...
We address black-box convex optimization problems, where the objective and constraint functions are not explicitly known but can be sampled within the feasible set. The challenge is thus to generate a sequence of feasible points converging towards an optim ...
Omnidirectional video streaming is usually implemented based on the representations of tiles, where the tiles are obtained by splitting the video frame into several rectangular areas and each tile is converted into multiple representations with different r ...
Control systems operating in real-world environments often face disturbances arising from measurement noise and model mismatch. These factors can significantly impact the perfor- mance and safety of the system. In this thesis, we aim to leverage data to de ...
We propose ordering-based approaches for learning the maximal ancestral graph (MAG) of a structural equation model (SEM) up to its Markov equivalence class (MEC) in the presence of unobserved variables. Existing ordering-based methods in the literature rec ...
Association for the Advancement of Artificial Intelligence (AAAI)2023