Machine learning and signal processing on the edge are poised to influence our everyday lives with devices that will learn and infer from data generated by smart sensors and other devices for the Internet of Things. The next leap toward ubiquitous electron ...
The field of micro electromechanical systems (MEMS) evolved from the microelectronic industry and the technologies developed to fabricate integrated circuits. As a result, MEMS are commonly fabricated on silicon wafers. The development of MEMS has been dri ...
Thermal motion of a room-temperature mechanical resonator typically dominates the quantum backaction of its position measurement. This is a longstanding barrier for exploring cavity optomechanics at room temperature. In order to enter the quantum regime of ...
This thesis investigates novel single-molecule luminescence phenomena at their inherent, sub-molecular length scale. The microscopic understanding of luminescence processes will be crucial for the continued improvement of organic optoelectronic and semicon ...
Two-dimensional (2D) materials such as graphene and transition metal dichalcogenide (TMDC) are considered as one of the most promising material platforms for future electronic devices, due to their ultra-thin thickness and fascinating electrical and optica ...
The work demonstrated in this thesis represent the path towards developing the large-scale fabrication of two-dimensional nanoporous membrane devices and use thereof as platforms to study nanoscale physics of water and ion flow through confined channels. M ...
The fabrication of metallic nanostructures on stretchable substrates enables specific applications that exploit the combination of the nano-scale phenomena and the mechanical tunability of the physical dimensions of the nanostructures. Due to the large dif ...
One of the key elements to improve mainstream crystalline silicon (c-Si) solar cell performance is surface passivation, which is at the center of the ongoing transition from cells with direct silicon-metal contacts to full area passivating contacts. In the ...
Environmental challenges impose a rapid energy transition. The renewable power capacity is expected to increase by 50% in the next 5 years, and recent scenarios plan that photovoltaics (PV) will be leading the new energy sources. Combining high efficiencie ...
Biologically inspired solid-state nanopores are artificial openings or apertures in thin membranes similar to natural protein ion channels in a lipid bilayer of cell membranes. In solid-state nanopores, a thin insulating membrane with single or multiple po ...