Genome-wide chromatin conformation capture assays provide formidable insights into the spatial organization of genomes. However, due to the complexity of the data structure, their integration in multi-omics workflows remains challenging. We present data st ...
The proliferation of microscopy methods for live-cell imaging offers many new possibilities for users but can also be challenging to navigate. The prevailing challenge in live-cell fluorescence microscopy is capturing intra-cellular dynamics while preservi ...
Human babies have a natural desire to interact with new toys and objects, through which they learn how the world around them works, e.g., that glass shatters when dropped, but a rubber ball does not. When their predictions are proven incorrect, such as whe ...
We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of optimal control problems (OCPs) constrained by random partial differential equ ...
In this paper, we propose an analytical stochastic dynamic programming (SDP) algorithm to address the optimal management problem of price-maker community energy storage. As a price-maker, energy storage smooths price differences, thus decreasing energy arb ...
Electron cloud continues to be one of the main limiting factors of the Large Hadron Collider (LHC), the biggest accelerator at CERN. These clouds form in the beam chamber when positively charged particles are passing through and cause unwanted effects in b ...
The aircraft assembly system is highly complex involving different stakeholders from multiple domains. The design of such a system requires comprehensive consideration of various industrial scenarios aiming to optimize key performance indicators. Tradition ...
The goal of this work is to use anisotropic adaptive finite elements for the numerical simulation of aluminium electrolysis. The anisotropic adaptive criteria are based on a posteriori error estimates derived for simplified problems. First, we consider an ...
Geometric properties of lattice quantum gravity in two dimensions are studied numerically via Monte Carlo on Euclidean Dynamical Triangulations. A new computational method is proposed to simulate gravity coupled with fermions, which allows the study of int ...
Background and Objective: Computational models of the cardiovascular system allow for a detailed and quantitative investigation of both physiological and pathological conditions, thanks to their ability to combine clinical-possibly patient-specific-data wi ...