Here, we present new cryogenic infrared spectra of the (Imidazole) H-n(+) (n=1,2,3) ions. The data was obtained using helium tagging infrared predissociation spectroscopy. The new results were compared with the data obtained by Gerardi et al. (Chem. Phys. ...
This thesis investigates novel single-molecule luminescence phenomena at their inherent, sub-molecular length scale. The microscopic understanding of luminescence processes will be crucial for the continued improvement of organic optoelectronic and semicon ...
The modeling of non-covalent interactions, solvation effects, and chemical reactions in complex molecular environment is a challenging task. Current state-of-the-art approaches often rely on static computations using implicit solvent models and harmonic ap ...
Using classical molecular dynamics simulations, we investigate the dielectric properties at interfaces of water with graphene, graphite, hexane, and water vapor. For graphite, we compare metallic and nonmetallic versions. At the vapor-liquid water and hexa ...
Transport through quantum coherent conductors, such as atomic junctions, is described by conduction channels. Information about the number of channels and their transmissions can be extracted from various sources, such as multiple Andreev reflections, dyna ...
This thesis presents the first cavity quantum electrodynamics experiments performed with a degenerate gas of 6Li with strong atom-atom interactions. The first part of this manuscript describes the design and the building of the apparatus that has been e ...
We investigate the momentum-resolved spin and charge susceptibilities, as well as the chemical potential and double occupancy in the two-dimensional Hubbard model as functions of doping, temperature, and interaction strength. Through these quantities, we i ...
Strength in numbers, combining many weak interactions into an overall strong connection, is the fundamental principle of multivaleny. This concept has been exploiting for the engineering of super-selective cell-targeting materials, which generally display ...
Exposing a molecule to an intense light pulse can create a nonstationary quantum state, thus launching correlated dynamics of electrons and nuclei. Although much had been achieved in the understanding of fundamental physics behind the electron-nuclear inte ...
State-to-state molecule/surface scattering experiments prepare the incident molecules in a specific quantum state and measure the quantum state distribution of the scattered molecules. The comparison of state resolved experiments with theory can serve as s ...