Jeux d'entrainement, de validation et de testEn apprentissage automatique, une tâche courante est l'étude et la construction d'algorithmes qui peuvent apprendre et faire des prédictions sur les données. De tels algorithmes fonctionnent en faisant des prédictions ou des décisions basées sur les données, en construisant un modèle mathématique à partir des données d'entrée. Ces données d'entrée utilisées pour construire le modèle sont généralement divisées en plusieurs jeux de données .
Sélection de caractéristiqueLa sélection de caractéristique (ou sélection d'attribut ou de variable) est un processus utilisé en apprentissage automatique et en traitement de données. Il consiste, étant donné des données dans un espace de grande dimension, à trouver un sous-sensemble de variables pertinentes. C'est-à-dire que l'on cherche à minimiser la perte d'information venant de la suppression de toutes les autres variables. C'est une méthode de réduction de la dimensionnalité. Extraction de caractéristique Catégorie:Apprentissage
Algorithme évolutionnistevignette|redresse=1.2|Un algorithme évolutionnaire utilise itérativement des opérateurs de sélections (en bleu) et de variation (en jaune). i : initialisation, f(X) : évaluation, ? : critère d'arrêt, Se : sélection, Cr : croisement, Mu : mutation, Re : remplacement, X* : optimum. Les algorithmes évolutionnistes ou algorithmes évolutionnaires (evolutionary algorithms en anglais), sont une famille d'algorithmes dont le principe s'inspire de la théorie de l'évolution pour résoudre des problèmes divers.
Biais algorithmiquevignette|Organigramme représentant l'algorithme derrière un moteur de recommandation. Un biais algorithmique est le fait que le résultat d'un algorithme d'apprentissage ne soit pas neutre, loyal ou équitable. Le biais algorithmique peut se produire lorsque les données utilisées pour entraîner un algorithme d'apprentissage automatique reflètent les valeurs implicites des humains impliqués dans la collecte, la sélection, ou l'utilisation de ces données.
Sélection de groupevignette|En 1994, et , propose la théorie de la sélection multi-niveaux, illustrée par l'emboîtement de poupées russes. La sélection naturelle pourrait s'exercer au niveau du gène, de la cellule, de l'organisme ou du groupe La sélection de groupe est une généralisation de la théorie de l'évolution par voie de sélection naturelle de Darwin, selon laquelle un groupe d'organismes qui coopèrent fonctionne mieux, à terme, qu'un groupe dont les membres sont en compétition.
Théorie des jeuxLa théorie des jeux est un domaine des mathématiques qui propose une description formelle d'interactions stratégiques entre agents (appelés « joueurs »). Les fondements mathématiques de la théorie moderne des jeux sont décrits autour des années 1920 par Ernst Zermelo dans l'article , et par Émile Borel dans l'article . Ces idées sont ensuite développées par Oskar Morgenstern et John von Neumann en 1944 dans leur ouvrage qui est considéré comme le fondement de la théorie des jeux moderne.
Algorithme du simplexeLalgorithme du simplexe est un algorithme de résolution des problèmes d'optimisation linéaire. Il a été introduit par George Dantzig à partir de 1947. C'est probablement le premier algorithme permettant de minimiser une fonction sur un ensemble défini par des inégalités. De ce fait, il a beaucoup contribué au démarrage de l'optimisation numérique. L'algorithme du simplexe a longtemps été la méthode la plus utilisée pour résoudre les problèmes d'optimisation linéaire.