Increasing numbers of multiresistant bacterial pathogens cause severe health problems on a global scale. Large quantities of bacteria and their resistance genes are discharged into natural environments via human and animal waste. Not much is known so far about the fate and further spread of resistance determinants in the environment. There is evidence that aquatic environments may function as important compartments for preserving and exchanging antibiotic resistance genes (ARG) from sewage and drinking water. Lake Geneva is the largest fresh water reservoir of Western Europe and supplies the surrounding cities. At the same time these cities discharge sewage into the lake. Lausanne is the largest city in the lake’s catchment and discharges the highest amount of treated, as well as in case of heavy rain events, partly untreated waste waters. Also two rivers, Chambering and Flown, transport untreated sewage (bypass), in case of storm events. Only 3.4 km from the sewage discharge point lake water is pumped for drinking water preparation for Lausanne. Many studies have reported on contamination of the bay with heavy metals, inorganic nutrients, organic carbon and fecal indicator bacteria due to the sewage discharge. The present thesis aimed on investigating the sources, spreading and fate of antibiotic resistant bacteria and antibiotic resistance genes in the Vida bay, Lake Geneva. In the first part of this dissertation, a screening for antibiotic- and specifically multi-resistant bacteria was carried out as one of the first studies in a Swiss waste water stream and the receiving fresh water lake. For this purpose, a combined set of culture based (viable bacterial counts on nutrient media supplemented with antibiotics) and molecular tools (detection and quantitation of antibiotic resistance genes from environmental DNA-extracts using quantitative real-time PCR) was applied. Raw hospital and communal sewage, as well as partly treated/mixed sewage, which is discharged into the lake via an effluent pipe 700 m off shore, were taken into account. Furthermore lake water samples nearby the end of the waste water discharge pipe and the drinking water pump as well as close to the two river mouths were analyzed. Finally, the role of Lausannes WTP was evaluated for its potential to remove resistant and multiresistant bacteria, as well ARG. Results show highest levels of multiresistant bacteria and ARG in both hospital and communal sewage. Incidence was found that the WTP is a selective environment for multiresistant bacteria and resistance genes. Moreover, lake water and sediments nearby the end of the WTP discharge pipe and the two river mouths exhibited significantly higher levels of resistant determinants as compared to samples from the drinking water uptake. If the level of antibiotic resistance close to the drinking water uptake represents the natural background level of the lake or whether it is impacted by the WTP plume remained open during this first sur
César Pulgarin, Stefanos Giannakis, Truong-Thien Melvin Le, Jérémie Decker
Camille Véronique Bernadette Goemans, Christian Eugen Zimmerli, Martin Beck