Verification and testing of hardware heavily relies on cycle-accurate simulation of RTL.
As single-processor performance is growing only slowly, conventional, single-threaded RTL simulation is becoming impractical for increasingly complex chip designs and ...
In this thesis, we propose to formally derive amplitude equations governing the weakly nonlinear evolution of non-normal dynamical systems, when they respond to harmonic or stochastic forcing, or to an initial condition. This approach reconciles the non-mo ...
We generalize and provide a linear algebra-based perspective on a finite element (FE) ho-mogenization scheme, pioneered by Schneider et al. (2017)[1] and Leuschner and Fritzen (2018)[2]. The efficiency of the scheme is based on a preconditioned, well-scale ...
Numerical simulations have become an indispensable tool in astrophysics and cosmology. The constant need for higher accuracy, higher resolutions, and models of
ever-increasing sophistication and complexity drives the development of modern tools
which targe ...
This paper develops high-order accurate entropy stable (ES) adaptive moving mesh finite difference schemes for the two- and three-dimensional special relativistic hydrodynamic (RHD) and magnetohydrodynamic (RMHD) equations, which is the high-order accurate ...
The discretization of robust quadratic optimal control problems under uncertainty using the finite element method and the stochastic collocation method leads to large saddle-point systems, which are fully coupled across the random realizations. Despite its ...
We present TimeEvolver, a program for computing time evolution in a generic quantum system. It relies on well-known Krylov subspace techniques to tackle the problem of multiplying the exponential of a large sparse matrix iH, where His the Hamiltonian, with ...
The Dirichlet-Neumann (DN) method has been extensively studied for linear partial differential equations, while little attention has been devoted to the nonlinear case. In this paper, we analyze the DN method both as a nonlinear iterative method and as a p ...
Two-level domain decomposition methods are very powerful techniques for the efficient numerical solution of partial differential equations (PDEs). A two-level domain decomposition method requires two main components: a one-level preconditioner (or its corr ...
This paper is concerned with the asymptotic optimality of spectral coarse spaces for two-level iterative methods. Spectral coarse spaces, namely coarse spaces obtained as the span of the slowest modes of the used one-level smoother, are known to be very ef ...