Proof by contradictionIn logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally valid. More broadly, proof by contradiction is any form of argument that establishes a statement by arriving at a contradiction, even when the initial assumption is not the negation of the statement to be proved.
Ordre lexicographiqueEn mathématiques, un ordre lexicographique est un ordre que l'on définit sur les suites finies d'éléments d'un ensemble ordonné (ou, de façon équivalente, les mots construits sur un ensemble ordonné). Sa définition est une généralisation de l'ordre du dictionnaire : l'ensemble ordonné est l'alphabet, les mots sont bien des suites finies de lettres de l'alphabet. La principale propriété de l'ordre lexicographique est de conserver la totalité de l'ordre initial.
Suite de polynômes orthogonauxEn mathématiques, une suite de polynômes orthogonaux est une suite infinie de polynômes p0(x), p1(x), p2(x) ... à coefficients réels, dans laquelle chaque pn(x) est de degré n, et telle que les polynômes de la suite sont orthogonaux deux à deux pour un produit scalaire de fonctions donné. Cette notion est utilisée par exemple en cryptologie ou en analyse numérique. Elle permet de résoudre de nombreux problèmes de physique, comme en mécanique des fluides ou en traitement du signal.
Order isomorphismIn the mathematical field of order theory, an order isomorphism is a special kind of monotone function that constitutes a suitable notion of isomorphism for partially ordered sets (posets). Whenever two posets are order isomorphic, they can be considered to be "essentially the same" in the sense that either of the orders can be obtained from the other just by renaming of elements. Two strictly weaker notions that relate to order isomorphisms are order embeddings and Galois connections.
Polynôme de Legendrethumb|upright=1.5|Polynômes de Legendre En mathématiques et en physique théorique, les polynômes de Legendre constituent l'exemple le plus simple d'une suite de polynômes orthogonaux. Ce sont des solutions polynomiales P(x), sur l'intervalle x ∈ [–1, 1], de l'équation différentielle de Legendre : dans le cas particulier où le paramètre n est un entier naturel. De façon équivalente, les polynômes de Legendre sont les fonctions propres de l'endomorphisme de R[X] défini par : pour les valeurs propres .
Démonstration constructiveUne première vision d'une démonstration constructive est celle d'une démonstration mathématique qui respecte les contraintes des mathématiques intuitionnistes, c'est-à-dire qui ne fait pas appel à l'infini, ni au principe du tiers exclu. Ainsi, démontrer l'impossibilité de l'inexistence d'un objet ne constitue pas une démonstration constructive de son existence : il faut pour cela en exhiber un et expliquer comment le construire. Si une démonstration est constructive, on doit pouvoir lui associer un algorithme.
Topologie de l'ordreEn mathématiques, la topologie de l'ordre est une topologie naturelle définie sur tout ensemble ordonné (E, ≤), et qui dépend de la relation d'ordre ≤. Lorsque l'on définit la topologie usuelle de la droite numérique R, deux approches équivalentes sont possibles. On peut se fonder sur la relation d'ordre dans R, ou sur la valeur absolue de la distance entre deux nombres. Les égalités ci-dessous permettent de passer de l'une à l'autre : La valeur absolue se généralise en la notion de distance, qui induit le concept de topologie d'un espace métrique.
Proof calculusIn mathematical logic, a proof calculus or a proof system is built to prove statements. A proof system includes the components: Language: The set L of formulas admitted by the system, for example, propositional logic or first-order logic. Rules of inference: List of rules that can be employed to prove theorems from axioms and theorems. Axioms: Formulas in L assumed to be valid. All theorems are derived from axioms. Usually a given proof calculus encompasses more than a single particular formal system, since many proof calculi are under-determined and can be used for radically different logics.
ArgumentationL’argumentation est l'action de convaincre et pousser ainsi l'autre à agir. Contrairement à la persuasion, elle vise à être comprise de tous et résiste à l'utilisation d'arguments fallacieux. L’argument est, en logique et en linguistique, l’ensemble des prémisses données en support à une conclusion. Une argumentation est composée d'une conclusion et d'un ou de plusieurs « éléments de preuve », que l'on appelle des prémisses ou des arguments, et qui constituent des raisons d'accepter cette conclusion.
Order theoryOrder theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.