This doctoral thesis navigates the complex landscape of motion coordination and formation control within teams of rotary-wing Micro Aerial Vehicles (MAVs). Prompted by the intricate demands of real-world applications such as search and rescue or surveillan ...
Situational awareness strategies are essential for the reliable and secure operation of the electric power grid which represents critical infrastructure in modern society. With the rise of converter-interfaced renewable generation and the consequent shift ...
In algorithms for solving optimization problems constrained to a smooth manifold, retractions are a well-established tool to ensure that the iterates stay on the manifold. More recently, it has been demonstrated that retractions are a useful concept for ot ...
We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of optimal control problems (OCPs) constrained by random partial differential equ ...
In this thesis, we give new protocols that offer a quantum advantage for problems in ML, Physics, and Finance.
Quantum mechanics gives predictions that are inconsistent with local realism.
The experiment proving this fact (Bell, 1964) gives a quantum proto ...
The European Union's Green Deal aims for a 55% reduction in greenhouse gas emissions by 2030. To reach this goal, a massive integration of Renewable Energy Sources (RES) into the power grid is necessary. As RES become a large part of the electricity genera ...
The thesis at hand is concerned with robots' navigation in human crowds. Specifically, methods are developed for planning a mobile robot's local motion between pedestrians, and they are evaluated in experiments where a robot interacts with real pedestrians ...
A vehicle's steering is a particular system in that it is exposed to individual subjective reviews based on criteria that are hard to assess quantitatively. Haptic design of such systems is a prime concern that has been at the center of industrial developm ...
In this thesis, we address the complex issue of collision avoidance in the joint space of robots. Avoiding collisions with both the robot's own body parts and obstacles in the environment is a critical constraint in motion planning and is crucial for ensur ...
We present a robust model predictive control (MPC) framework for linear systems facing bounded parametric uncertainty and bounded disturbances. Our approach deviates from standard MPC formulations by integrating multi-step predictors, which provide reduced ...