Isogeny-based cryptography is an instance of post-quantum cryptography whose fundamental problem consists of finding an isogeny between two (isogenous) elliptic curves E and E′. This problem is closely related to that of computing the endomorphism ring of ...
Given two elliptic curves and the degree of an isogeny between them, finding the isogeny is believed to be a difficult problem—upon which rests the security of nearly any isogeny-based scheme. If, however, to the data above we add information about the beh ...
We provide new explicit examples of lattice sphere packings in dimensions 54, 55, 162, 163, 486 and 487 that are the densest known so far, using Kummer families of elliptic curves over global function fields.
In some cases, these families of elliptic curve ...
Current cryptographic solutions will become obsolete with the arrival of large-scale universal quantum computers. As a result, the National Institute of Standards and Technology supervises a post-quantum standardization process which involves evaluating ca ...
Since the advent of internet and mass communication, two public-key cryptographic algorithms have shared the monopoly of data encryption and authentication: Diffie-Hellman and RSA.
However, in the last few years, progress made in quantum physics -- and mo ...
With the looming threat of large-scale quantum computers, a fair portion of recent cryptographic research has focused on examining cryptographic primitives from the perspective of a quantum adversary. Shor's 1994 result revealed that quantum computers can ...
Post-quantum cryptography is a branch of cryptography which deals with cryptographic algorithms whose hardness assumptions are not based on problems known to be solvable by a quantum computer, such as the RSA problem, factoring or discrete logarithms.
This ...
Inspired by the work of Lang-Trotter on the densities of primes with fixed Frobenius traces for elliptic curves defined over Q and by the subsequent generalization of Cojocaru-Davis-Silverberg-Stange to generic abelian varieties, we study the analogous que ...
Let f(z)=q+∑n≥2a(n)qn be a weight k normalized newform with integer coefficients and trivial residual mod 2 Galois representation. We extend the results of Amir and Hong in Amir and Hong (On L-functions of modular elliptic curves and certain K3 surfaces, R ...
We study the elliptic curves given by y(2) = x(3) + bx + t(3n+1) over global function fields of characteristic 3 ; in particular we perform an explicit computation of the L-function by relating it to the zeta function of a certain superelliptic curve u(3) ...