Harmful chemical compounds are released daily in warehouses, chemical plants and during environmental emergencies.
Their uncontrolled dispersion contributes to the pollution of the atmosphere and threatens human and animal lives.
When gas leaks occur, the ...
In the past few years, Machine Learning (ML) techniques have ushered in a paradigm shift, allowing the harnessing of ever more abundant sources of data to automate complex tasks. The technical workhorse behind these important breakthroughs arguably lies in ...
Social insects, such as ants, termites, and honeybees, have evolved sophisticated societies where the collaborative efforts of "simple" individuals can lead to the emergence of complex dynamics. The reliance of each organism on the collective is so great t ...
The ability to reason, plan and solve highly abstract problems is a hallmark of human intelligence. Recent advancements in artificial intelligence, propelled by deep neural networks, have revolutionized disciplines like computer vision and natural language ...
In the realm of point cloud scene understanding, particularly in indoor scenes, objects are arranged following human habits, resulting in objects of certain semantics being closely positioned and displaying notable inter-object correlations. This can creat ...
The control possibilities for soft robots have long been hindered by the need for reliable methods to estimate their configuration. Inertial measurement units (IMUs) can solve this challenge, but they are affected by well-known drift issues. This letter pr ...
In recent years, soft robotics has surged in applications like wearables, drones, smart fabrics, and medical instruments. Due to their compliance, these devices excel in tasks demanding dexterity and adaptability, such as manipulation, locomotion, crash re ...
Transformer models such as GPT generate human-like language and are predictive of human brain responses to language. Here, using functional-MRI-measured brain responses to 1,000 diverse sentences, we first show that a GPT-based encoding model can predict t ...
This doctoral thesis navigates the complex landscape of motion coordination and formation control within teams of rotary-wing Micro Aerial Vehicles (MAVs). Prompted by the intricate demands of real-world applications such as search and rescue or surveillan ...
In this PhD manuscript, we explore optimisation phenomena which occur in complex neural networks through the lens of 2-layer diagonal linear networks. This rudimentary architecture, which consists of a two layer feedforward linear network with a diagonal ...