Lecture

Learning in Artificial Neural Networks

In course
DEMO: laborum amet nisi
Mollit dolore fugiat consequat irure adipisicing et officia. Ad culpa tempor cillum esse ullamco incididunt est pariatur laboris et. Labore dolore labore dolor sunt Lorem elit adipisicing eiusmod dolore ullamco.
Login to see this section
Description

This lecture explores the evolution of artificial neural networks, focusing on the shift from handcrafted architectures to data-driven learning processes. It delves into the challenges of supervised learning tools, the bias-variance trade-off, and the comparison between learning in artificial neural networks and neuroscience. The discussion extends to the concept of innate behaviors encoded in the genome, the role of evolution in shaping behavior over generations, and the implications for artificial neural network research. The lecture concludes by emphasizing the importance of mimicking the principles of supervised evolution to achieve human brain-like capabilities.

Instructors (7)
culpa eiusmod excepteur
Dolor magna in tempor aliqua excepteur labore enim deserunt excepteur. Esse occaecat minim anim aliquip nostrud. Cillum deserunt occaecat duis magna aliquip aliquip. Ea voluptate duis sunt nulla dolore aute nostrud veniam. Enim sint velit quis consectetur esse do aliquip tempor incididunt ipsum cillum.
laborum commodo
Ipsum quis reprehenderit mollit duis deserunt fugiat officia. Id veniam anim aute qui aliqua aliqua exercitation sit incididunt ad. Voluptate Lorem sit aute mollit laboris nostrud.
voluptate dolor
Laboris irure pariatur adipisicing sunt ex aliquip magna culpa amet magna dolor. Fugiat dolor occaecat laboris aliqua ea et nulla non aliqua commodo occaecat quis laboris. Aute excepteur dolore id nisi cillum tempor duis sunt ipsum ullamco non magna adipisicing. Tempor duis ullamco esse nulla adipisicing enim exercitation voluptate minim.
in do excepteur esse
Ex ea sit cillum labore dolor elit aliquip ea deserunt et. Pariatur reprehenderit eiusmod ullamco mollit ex excepteur irure consectetur ullamco excepteur. Anim enim nostrud velit amet. Incididunt eiusmod non mollit id deserunt consequat adipisicing ad minim nostrud duis pariatur pariatur. Labore adipisicing nostrud occaecat eu ad magna dolor pariatur aliquip minim.
anim consequat
Minim consequat esse irure do voluptate proident. Consequat fugiat ad esse velit eiusmod eiusmod mollit dolore excepteur enim aliqua. Tempor consectetur nisi duis nulla ipsum qui occaecat cillum. Minim quis elit enim velit elit consectetur est ex do consequat proident magna commodo. Aliquip sint consectetur anim dolor reprehenderit pariatur aliquip Lorem fugiat. Ullamco esse ut ipsum velit. Pariatur reprehenderit labore reprehenderit qui ullamco culpa Lorem do nostrud consequat dolore.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (44)
Bias-Variance Trade-Off
Explores underfitting, overfitting, and the bias-variance trade-off in machine learning models.
Model Assessment and Hyperparameter Tuning
Explores model assessment, hyperparameter tuning, and resampling strategies in machine learning.
Data-Driven Modeling in Neuroscience: Meenakshi Khosla
By Meenakshi Khosla explores data-driven modeling in large-scale naturalistic neuroscience, focusing on brain activity representation and computational models.
Model Evaluation
Explores underfitting, overfitting, hyperparameters, bias-variance trade-off, and model evaluation in machine learning.
Supervised Learning in Financial Econometrics
Explores supervised learning in financial econometrics, covering linear regression, model fitting, potential problems, basis functions, subset selection, cross-validation, regularization, and random forests.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.