Lecture

External Energy Derivation

In course
DEMO: et irure
Labore eiusmod qui non veniam cillum do ullamco excepteur dolor. Aliquip fugiat cupidatat sint esse magna aute ea quis. Labore exercitation elit voluptate dolor labore proident ad eiusmod. Do nostrud occaecat ea proident do consectetur deserunt aliqua. Velit ad minim dolore labore consequat excepteur exercitation et et. Culpa amet labore elit minim deserunt sunt adipisicing.
Login to see this section
Description

This lecture covers the derivation of external energy in the context of geometric computing, focusing on implementing member functions in Python files to optimize design parameters, add point forces, and test code against finite difference. It also explores the concept of path independence in constant forces and practical implementation with deformed and undeformed mesh configurations.

This video is available exclusively on Mediaspace for a restricted audience. Please log in to MediaSpace to access it if you have the necessary permissions.

Watch on Mediaspace
Instructor
sint voluptate
Officia dolore consectetur cupidatat commodo officia. Aliquip quis aliqua excepteur ullamco dolore ex laborum aute consequat minim velit amet. Commodo sit et dolor est amet incididunt consectetur ullamco eiusmod minim ea ipsum exercitation ipsum. Adipisicing commodo Lorem et culpa. Nostrud et officia minim aliquip cupidatat velit reprehenderit est labore.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (39)
Modeling Prisoner's Dilemma: Naive vs. Optimal
Explores the modeling of the '100 prisoners' problem and compares naive and optimal approaches.
Advanced Pandas Functions
Focuses on advanced pandas functions for data manipulation, exploration, and visualization with Python, emphasizing the importance of understanding and preparing data.
Data Wrangling with Hadoop
Covers data wrangling techniques using Hadoop, focusing on row versus column-oriented databases, popular storage formats, and HBase-Hive integration.
Spark Data Frames
Covers Spark Data Frames, distributed collections of data organized into named columns, and the benefits of using them over RDDs.
Show more