Lecture

Linear SVM derivation

Description

This lecture covers the derivation of Linear Support Vector Machine (SVM) starting from the classifier margin concept, computing the distance to the separating hyperplane, determining constraints, solving the constrained optimization problem, interpreting the solution, and discussing the dual optimization using the Karush-Kuhn-Tucker (KKT) conditions.

Instructor
occaecat aliquip consectetur elit
Amet ea est exercitation sunt non deserunt. Consequat proident dolore nulla id. Anim ipsum sunt proident amet ipsum. Occaecat aute cupidatat ipsum veniam. Nulla velit mollit id dolor elit. Esse est eu magna quis ut laboris. Do nostrud velit do nostrud dolore culpa magna laboris mollit.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.