Lecture

Finite Element Method: Basics

In course
DEMO: tempor elit anim cillum
Velit dolor et voluptate et culpa dolor qui dolore Lorem. Consequat ad magna et culpa elit. Occaecat non elit nulla elit culpa voluptate irure. Magna culpa veniam voluptate quis. Dolore ea mollit voluptate sunt eu ullamco ex fugiat dolor veniam labore qui. Voluptate do velit duis tempor Lorem deserunt consequat culpa. Lorem voluptate aliquip minim velit dolor commodo pariatur incididunt reprehenderit commodo laboris nulla sit cupidatat.
Login to see this section
Description

This lecture covers the basics of the finite element method, starting with the strong formulation of the problem and moving on to the approximate weak formulation. It explains the approximation of real and virtual temperatures, the discretization in triangular and quadrangular finite elements, and the assembly of elementary contributions. The instructor demonstrates the association of shape functions to nodal temperatures, the Galerkin technique, and the index form of the discrete weak formulation.

Instructor
qui occaecat pariatur nisi
Minim dolore ipsum aute esse exercitation in ex commodo dolor magna. Culpa consectetur adipisicing enim ex eu aute irure amet incididunt minim sunt anim fugiat veniam. Dolore veniam aliqua occaecat consectetur esse nisi commodo ullamco qui laboris minim eu esse amet. Dolor voluptate aliquip eiusmod laborum non nulla. Cillum mollit sunt ex quis enim.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (32)
Finite Element Method: Local Approach
Explores the local approach in the finite element method, covering nodal shape functions and assembly.
Finite Element Method: Weak Formulation and Galerkin Method
Explores the weak formulation and Galerkin method in Finite Element Method applications, including boundary conditions and linear systems of equations.
Finite Element Method: Local Approach
Explores the local approach of the finite element method, covering nodal shape functions, solution restrictions, sizes, boundary conditions, and assembly operations.
Finite Element Method: Global Approach
Explains the finite element method's global approach and its application examples.
Finite Element Method: Global vs Local Approach
Compares the global and local approaches of the Finite Element Method.
Show more