Lecture

Inverse Functions: Derivatives and Solutions

In course
DEMO: irure cupidatat
Enim irure eiusmod veniam fugiat culpa elit reprehenderit ullamco laborum esse est. Deserunt et ea eu quis ullamco ea ipsum nulla magna esse duis esse consectetur esse. Nostrud adipisicing minim et dolore quis ea elit ea et aliqua minim. Aliquip excepteur mollit irure excepteur tempor culpa laboris in reprehenderit pariatur nostrud.
Login to see this section
Description

This lecture covers the concept of inverse functions, their derivatives, and solutions in the context of a specific mathematical function. The instructor explains the process of finding the derivative of the inverse function and determining solutions for given equations.

Instructor
dolor aute eu
Labore voluptate incididunt do fugiat nulla nostrud in non aliquip. Sunt non anim sit nulla irure ea minim. Eu do ad nulla est officia minim nulla consequat irure sint nostrud. Ipsum mollit deserunt laboris duis pariatur enim minim sint excepteur commodo. Voluptate ea et elit id ut tempor aliqua ea deserunt ea minim eu consequat duis. Magna laboris qui aliquip officia eiusmod voluptate veniam. Proident ex esse deserunt dolore mollit velit.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (39)
Mechanics: Introduction and Calculus
Introduces mechanics, differential and vector calculus, and historical perspectives from Aristotle to Newton.
Partial Derivatives and Functions
Covers partial derivatives for functions of one and two variables, emphasizing their importance and calculation.
Derivatives and Continuity in Multivariable Functions
Covers derivatives and continuity in multivariable functions, emphasizing the importance of partial derivatives.
Implicit Functions Theorem
Covers the Implicit Functions Theorem, explaining how equations can define functions implicitly.
Show more