Lecture

Quantum Mechanics: Schrödinger Equation

In course
DEMO: commodo pariatur
Irure magna incididunt incididunt nisi deserunt magna ut sunt esse. Eiusmod incididunt labore minim proident esse commodo reprehenderit aliqua fugiat eu commodo proident pariatur sint. Ipsum exercitation tempor aute reprehenderit consectetur irure voluptate ut laborum dolor quis non aliquip. Esse incididunt labore aliqua eu consequat enim qui ex tempor qui amet officia exercitation. Voluptate veniam culpa adipisicing consequat ex Lorem nulla ex labore in. In voluptate esse ut occaecat deserunt in culpa aute.
Login to see this section
Description

This lecture covers the Schrödinger Equation, which describes the total energy of quantum systems in terms of kinetic and potential energy operators. It explains the time-dependent and time-independent Schrödinger equations, approximations to solve them, quantum numbers, exclusion principle, atomic orbitals, and molecular orbital theory. The lecture also discusses valence electrons, VSEPR model, valence bond theory, hybridization, formation of carbon-carbon bonds, molecular orbital energy diagrams, and the complementarity of Valence Bond and Molecular Orbital theories.

Instructor
adipisicing dolore esse officia
Ea voluptate incididunt consequat qui. Amet ullamco ea proident et. Fugiat proident ad cupidatat esse. Enim veniam sint in excepteur sint aute. Voluptate non sint culpa ex id ad eu ad nisi tempor et in sint. Laboris exercitation reprehenderit elit do ullamco.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (58)
Molecular Orbitals: Bonding and Hybridization
Explores the transition from atomic to molecular orbitals, covering quantum systems, approximations, valence electrons, and covalent bonds.
Crystal Field Theory: Spectrochemical Series
Explores the Spectrochemical Series for metals and ligands, Crystal Field Splitting, Jahn-Teller distortion, and bonding interactions in coordination compounds.
Atomic Structure: Quantum Mechanics
Covers atomic theory, Schrödinger equation, quantum numbers, electron configurations, and periodic properties of elements.
Quantum Mechanical Model: Wavefunction
Explores the Quantum Mechanical Model, including wave-particle duality, the uncertainty principle, and electron orbitals.
Ligand Field Theory: Crystal Field Splitting
Delves into ligand field theory, crystal field splitting, and molecular orbitals in transition metal complexes.
Show more