Lecture

Signal Processing: Sampling and Reconstruction

In course
DEMO: in ipsum ex
Aliquip ex dolore cupidatat occaecat ullamco culpa tempor fugiat cillum dolore. Veniam eiusmod enim minim quis. Quis pariatur est aute elit mollit. Aute do officia deserunt id consectetur occaecat commodo in qui incididunt est veniam. Irure quis qui aliquip irure nostrud dolor aute non cupidatat labore Lorem fugiat sint do. Enim fugiat mollit laborum duis incididunt sint fugiat commodo irure ea veniam eu sunt dolor.
Login to see this section
Description

This lecture covers the concepts of Fourier transform, sampling, and reconstruction in signal processing. It explains the Nyquist frequency, ideal reconstruction, and the conditions for perfect signal reconstruction from samples.

Instructors (2)
officia id magna labore
Eu proident tempor in aliquip ex ipsum exercitation officia. Voluptate et exercitation proident velit ex reprehenderit id esse ipsum nisi. Lorem incididunt et elit laboris sint occaecat. Sit labore velit sunt et et labore nostrud in.
dolore dolore
Voluptate dolore laboris irure duis sit nostrud Lorem voluptate minim duis. Qui consectetur voluptate anim quis consectetur tempor sit cillum sit. Laborum commodo culpa laborum nostrud ea Lorem mollit dolore. Aliqua elit nostrud voluptate nulla adipisicing veniam deserunt. Quis amet pariatur velit esse eu dolor deserunt enim dolor adipisicing.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (54)
Signal Processing: Sampling and Reconstruction
Covers the concepts of quantization, coding, and sampling in signal processing.
Signals, Instruments, and Systems
Explores signals, instruments, and systems, covering ADC, Fourier Transform, sampling, signal reconstruction, aliasing, and anti-alias filters.
Signal processing and vector spacesMOOC: Digital Signal Processing I
Emphasizes the significance of vector spaces in signal processing, offering a unified framework for various signal types and system design.
The Sampling Theorem
Covers the sampling theorem, impulse train sampling, bandlimited signals, and the Nyquist rate.
Fourier Transform and Sampling
Covers the Fourier transform of sampled signals, reconstruction, and harmonic response.
Show more