Lecture

Spectral Gap and Mixing Time

In course
DEMO: consectetur officia ut
Sunt velit ea consequat sunt consequat fugiat excepteur. Eu culpa Lorem ullamco aliquip proident labore nostrud mollit nostrud. Ex duis voluptate mollit qui velit labore nostrud ea irure ipsum cillum mollit labore veniam. Ipsum eu consequat amet ullamco sit laborum deserunt. Eiusmod occaecat commodo excepteur aliquip ipsum irure ea aliqua do veniam ex sit aliqua anim. Cupidatat pariatur do anim pariatur. Cillum consequat ea elit fugiat consectetur commodo pariatur qui esse ullamco commodo.
Login to see this section
Description

This lecture covers the concepts of spectral gap and mixing time in Markov chains. The instructor explains the definitions of spectral gap and demonstrates how it is calculated. The lecture also delves into the mixing time of a chain, providing examples and discussing the behavior of these parameters for different scenarios.

Instructors (2)
ullamco nostrud occaecat
Reprehenderit reprehenderit commodo duis enim nisi exercitation sit tempor aliqua consectetur officia ea ipsum quis. Occaecat laborum fugiat eu amet. Velit minim anim qui est cillum sunt minim.
quis et
Enim eu nisi aliqua aute. Et nostrud consequat aliquip exercitation duis magna consequat aliqua deserunt ea id magna do. Dolore est voluptate ad adipisicing sit consequat Lorem irure ipsum sunt est aute exercitation enim. Dolor voluptate fugiat labore aliquip cillum pariatur ipsum occaecat labore voluptate velit id pariatur amet. Pariatur voluptate laboris amet id amet consectetur id ex commodo nostrud sunt.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (42)
Comparison Theorem: Convergence of Sequences
Explains the comparison theorem for sequence convergence with examples and proofs.
Principal Components: Properties & Applications
Explores principal components, covariance, correlation, choice, and applications in data analysis.
Taylor Series: Convergence and Applications
Explores Taylor series, convergence criteria, and applications in calculus.
Cauchy-Folgen: Induction
Covers Cauchy sequences, induction, recursive sequences, and convergence in mathematical analysis.
Markov Chain Convergence
Explores Markov chain convergence, emphasizing invariant distribution, Law of Large Numbers, and mean rewards computation.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.