Lecture

KNN Classifier: Nearest Neighbor Approach

In course
DEMO: fugiat esse laborum laboris
Sint deserunt mollit incididunt laborum. Pariatur nisi eu excepteur culpa tempor eu sit sint sunt. Anim ipsum enim adipisicing aute aute veniam.
Login to see this section
Description

This lecture covers the K-Nearest Neighbors (KNN) classifier, a simple machine learning algorithm that assigns a label to a new point based on the labels of its closest known points. It explains the probabilistic approach of KNN to smooth away noise in labels, the classification process with KNN, the impact of different distance metrics on decision surfaces, and the advantages of KNN such as simplicity and not requiring assumptions about data distribution.

Instructor
non veniam adipisicing
Nostrud laborum amet eiusmod quis labore sint qui fugiat ipsum elit sint sit eiusmod sint. Minim anim ex magna culpa esse dolore cupidatat culpa pariatur. Anim labore sint duis Lorem magna commodo pariatur quis sint et. Minim ad mollit laboris laboris est mollit enim sunt dolore Lorem nulla velit. Aliqua qui ipsum non id id nisi magna qui aliqua laborum sit commodo sint. Esse duis nostrud magna ut laborum cillum cupidatat aliquip tempor est cupidatat in.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.