Lecture

Lipschitz continuous Hessian and Newton's method

Description

This lecture covers the local convergence of Newton's method with a focus on the Lipschitz continuous Hessian. The instructor explains the conditions for the convergence of Newton's method and provides a theorem regarding the behavior of the method. The lecture also delves into the quadratic convergence of Newton's method and the proof behind it. Additionally, the lecture introduces the CG algorithm for solving linear equations, specifically focusing on the Conjugate Gradients method and its termination conditions based on the eigenvalues of the linear map.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.