Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Alexander studied pure mathematics with a minor in logic and theory of science at the Ludwig Maximilians University in Munich. For his PhD also at LMU, he worked on optimal coding approaches to elucidate the properties of grid cells. As a postdoctoral fellow with Prof. Venkatesh N. Murthy at Harvard University and Prof. Matthias Bethge at Tuebingen AI, he decided to study olfactory behaviors such as odor-guided navigation, social behaviors and the cocktail party problem in mice. During this time, he increasingly got interested sensorimotor behaviors beyond olfaction and started working on proprioception, motor adaption, as well as computer vision tools for measuring animal behavior. In his group, he is interested in elucidating how the brain gives rise to adaptive behavior. One of the major goals is to synthesize large datasets into computationally useful information. For those purposes, he develops algorithms and systems to analyze animal behavior (e.g. DeepLabCut), neural data, as well as creates experimentally testable computational models.
Please note that this is not a complete list of this person’s publications. It includes only semantically relevant works. For a full list, please refer to Infoscience.
Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi
Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi
Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi