Publication

Postlesional plasticity in central auditory processing

Dragana Viceic
2007
EPFL thesis
Abstract

The most general and striking evidence related with brain injury is that of the restoration of function. Recovery of motor and somatosensory functions has shown to commonly occur after stroke, but not all individuals show improvement. Clinical studies have shown the capacity of pharmacological and rehabilitative interventions to accelerate and/or augment recovery after stroke. However, the mechanisms underlying the post-stroke brain functional reorganization, i.e., the brain plasticity, are still not well established. Therefore, therapeutic trials of agents or rehabilitative procedures targeting stroke recovery may benefit from brain mapping studies that may aid to better understand this functional reorganization. Thus the research aimed at the identification of the mechanisms underlying functional recovery should be given high priority, particularly with regard to environmental enrichment, rehabilitation and pharmacological interventions. Prior to investigation of post-stroke functional reorganization, two important conditions have to be gathered: having knowledge of the brain function under normal conditions, i.e., in normal subjects without brain lesions, and having devices adapted to study brain region of interest. This thesis addresses the post-stroke functional reorganization in auditory processing with a cross-sectional study in patients with unilateral hemispheric lesions and a longitudinal study in a patient with a lesion of a right acoustic radiation. Before performing these two studies with patients, normal function of the auditory processing is assessed and appropriate tools are developed. Audition is the key to language processing, the most important communication system in man. Hearing impairments arising from pathology of the brain injury may have detrimental consequences on the quality of the patient life, restricting our ability to interact with others, causing misunderstandings and fatigue, heightening stress and filtering out the myriad of sound experiences that give pleasure and meaning to life. The perception of an auditory scene in everyday acoustic environments involves identifying the content ("what") and the location ("where") of sound. Evidence indicates that sound recognition and sound localization are processed by at least partially independent anatomically distinct networks. In humans, activation studies have suggested existence of a ventral, temporo-frontal, "what" and dorsal, parieto-prefrontal, "where" pathways on the convexities. However, no studies have been able to clearly demonstrate "what" and "where" specialization in early stage auditory areas. This is mainly due to high local interindividual sulcal variability. Indeed, the precise realignment of anatomical landmarks on the supratemporal plane could not be achieved with current registration methods, thus providing less detailed and accurate functional maps. After a short introduction on brain variability, a brief description of auditory cortex structure and function is presented. High variability of the auditory cortex is a major problem when performing activation group studies. For this reason, the interindividual comparison of auditory activations necessitates appropriate method for brain superposition, i.e., brain registration. Two registration approaches are described, voxel-based and feature-based approaches, with demonstrating the benefit of feature-based approaches for interindividual superposition of highly variable cortical structures. Therefore we developed a local landmark-based registration algorithm. This algorithm mainly consisted in semi-automatical extraction of the sulci delimiting Heschl's gyrus and in their realignment, using thin-plate splines, with the corresponding landmarks of the reference brain. We employed this algorithm on "what" and "where" functional data in 18 normal subjects acquired with 1.5 Tesla MR scanner (from [1]) and 15 normal subjects acquired with 3 Tesla MR scanner. Our results have shown that a precise realignment of anatomical structures on the supratemporal plane yielded more detailed functional maps of a group of subjects, which were more consistent with cytoarchitectonically defined auditory areas, than widely used global non-rigid voxel-based registration methods. Moreover, our results demonstrated a specialization of anterior and anterior lateral auditory areas in sound recognition, and caudomedial and posterior auditory areas in sound localization. A first patient study performed on patients with unilateral hemispheric lesion compared "what" and "where" activations on the supratemporal plane between each patient and a group of normal subjects (both acquired with 1.5 Tesla). Our results demonstrated that a unilateral hemispheric lesion, left or right, disturbs auditory processing in both ipsilesional and contralesional hemispheres. This disruption of auditory processing may be an increase or decrease of activation patterns in an area known to be activated for conjoint activations by sound recognition and sound localization. Moreover, our results demonstrated that specialized networks were disturbed in patients with unilateral hemispheric lesions in two different ways: (i) changes in specialized task-related activations, and (ii) increase in specialized task-related networks in the intact hemisphere associated with normal performance in the corresponding task. In a second patient study that is a longitudinal study performed on a patient with a lesion of a right acoustic radiation, we investigated the effect of a unilateral subcortical lesion on the early cortical auditory processing within intact ipsilesional and contralesional hemispheres. Our results demonstrated the contralesional increase in activation of homologous auditory areas in the early stage of recovery, when auditory function was impaired, while at later stage the ipsilesional regions were more activated, as auditory function recovered.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (39)
Auditory system
The auditory system is the sensory system for the sense of hearing. It includes both the sensory organs (the ears) and the auditory parts of the sensory system. The outer ear funnels sound vibrations to the eardrum, increasing the sound pressure in the middle frequency range. The middle-ear ossicles further amplify the vibration pressure roughly 20 times. The base of the stapes couples vibrations into the cochlea via the oval window, which vibrates the perilymph liquid (present throughout the inner ear) and causes the round window to bulb out as the oval window bulges in.
Auditory cortex
The auditory cortex is the part of the temporal lobe that processes auditory information in humans and many other vertebrates. It is a part of the auditory system, performing basic and higher functions in hearing, such as possible relations to language switching. It is located bilaterally, roughly at the upper sides of the temporal lobes – in humans, curving down and onto the medial surface, on the superior temporal plane, within the lateral sulcus and comprising parts of the transverse temporal gyri, and the superior temporal gyrus, including the planum polare and planum temporale (roughly Brodmann areas 41 and 42, and partially 22).
Lateralization of brain function
The lateralization of brain function (or hemispheric dominance/ latralisation ) is the tendency for some neural functions or cognitive processes to be specialized to one side of the brain or the other. The median longitudinal fissure separates the human brain into two distinct cerebral hemispheres, connected by the corpus callosum. Although the macrostructure of the two hemispheres appears to be almost identical, different composition of neuronal networks allows for specialized function that is different in each hemisphere.
Show more
Related publications (91)

Unraveling behavior and cortical signals to guide the development of soft neuroprostheses for auditory restoration and spreading depolarization

Emilie Cornelia Maria Revol

Neuroprostheses have been used clinically for decades, to help restore or preserve brain functions, when pharmaceutical treatments are inefficient. Although great progress in the field has been made over the years to interface with the nervous system, surf ...
EPFL2024

An immersive virtual reality tool for assessing left and right unilateral spatial neglect

Olaf Blanke, Andrea Serino, Roberta Ronchi

The reported rate of the occurrence of unilateral spatial neglect (USN) is highly variable likely due to the lack of validity and low sensitivity of classical tools used to assess it. Virtual reality (VR) assessments try to overcome these limitations by pr ...
Hoboken2024

Safety, tolerability and blinding efficiency of non-invasive deep transcranial temporal interference stimulation: first experience from more than 250 sessions

Friedhelm Christoph Hummel, Pierre Theopistos Vassiliadis, Elena Beanato, Fabienne Windel, Emma Marie D Stiennon, Maximilian Jonas Wessel

Objective. Selective neuromodulation of deep brain regions has for a long time only been possible through invasive approaches, because of the steep depth-focality trade-off of conventional non-invasive brain stimulation (NIBS) techniques. Approach. An appr ...
Bristol2024
Show more
Related MOOCs (31)
Cellular Mechanisms of Brain Function
This course aims for a mechanistic description of mammalian brain function at the level of individual nerve cells and their synaptic interactions.
Cellular Mechanisms of Brain Function
This course aims for a mechanistic description of mammalian brain function at the level of individual nerve cells and their synaptic interactions.
Selected chapters form winterschool on multi-scale brain
Understanding the brain requires an integrated understan­ding of different scales of organisation of the brain. This Massive Open Online Course (MOOC) will take the you through the latest data, models
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.