Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Parkinson's disease (PD) is characterized by the progressive degeneration of the nigrostriatal dopaminergic system. Brain delivery of glial cell line-derived neurotrophic factor (GDNF) has been shown to protect and restore the dopaminergic pathway in various animal models of PD. However, GDNF overexpression in the dopaminergic pathway leads to a time-dependent down-regulation of tyrosine hydroxylase (TH), a key enzyme in dopamine synthesis. In order to elucidate GDNF-mediated biochemical effects on dopaminergic neurons, we overexpressed GDNF in the intact rat striatum using a lentiviral vector-mediated gene transfer technique. Long-term GDNF overexpression led to increased GTP cyclohydrolase I (GTPCH I) activity and tetrahydrobiopterin (BH4) levels. Further, we observed a down-regulation of TH enzyme activity in morphologically intact striatal dopaminergic nerve terminals, as well as a significant decrease of dopamine levels in striatal tissue samples. These results indicate that long-term GDNF delivery is a major factor affecting dopamine biosynthesis via a direct or indirect modulation of TH and GTPCH I and further underscore the importance of assessing both GDNF dose and delivery duration prior to clinical application in order to circumvent potentially adverse pharmacological effects on the biosynthesis of dopamine.
Carl Petersen, Sylvain Crochet, Yanqi Liu, Parviz Ghaderi, Mauro Pulin, Anthony Pierre Robert Renard, Christos Sourmpis, Pol Bech Vilaseca, Meriam Malekzadeh, Robin François Virginien Dard
, ,
Michael Herzog, Bogdan Draganski, Maya Anna Jastrzebowska, Renaud Marquis