Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This paper presents hardware and software mechanisms to enable concurrent direct network access (CDNA) by operating systems running within a virtual machine monitor. In a conventional virtual machine monitor, each operating system running within a virtual machine must access the network through a software-virtualized network interface. These virtual network interfaces are multiplexed in software onto a physical network interface, incurring significant performance overheads. The CDNA architecture improves networking efficiency and performance by dividing the tasks of traffic multiplexing, interrupt delivery, and memory protection between hardware and software in a novel way. The virtual machine monitor delivers interrupts and provides protection between virtual machines, while the network interface performs multiplexing of the network data. In effect, the CDNA architecture provides the abstraction that each virtual machine is connected directly to its own network interface. Through the use of CDNA, many of the bottlenecks imposed by software multiplexing can be eliminated without sacrificing protection, producing substantial efficiency improvements.
Babak Falsafi, Mathias Josef Payer, Yuanlong Li, Florian Hofhammer, Siddharth Gupta, Atri Bhattacharyya, Andrés Sánchez Marín
Mathias Josef Payer, Flavio Toffalini, Qiang Liu
Anastasia Ailamaki, Angelos Christos Anadiotis, Raja Appuswamy, Hillel Avni