Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Nano-positioning devices constitute the mechatronic heart of the VLTI (Very Large Telescope Interferometer) for the ESO (European Southern Observatory) astrometry instrumentation. In the context of the development of a new optical Differential Delay Line (DDL) for the VLTI, a dual-stage feedback control structure for an overactuated system is developed. In order to achieve fast nanometer accuracy over large displacements, a piezoelectric stack actuator is used for fast and fine positioning, while a permanent magnet stepper motor manages the coarse positioning. A double-parallelogram flexure with a notch-hinge mechanism (on top of which the piezo is mounted) ensures flat translation within the coarse precision specification. Because a single measurement device is used, the references for both control loops (fine and coarse) must be suitably obtained. An adequate control structure including a partial observer is designed so as to take into account the influence of the fine actuator on the position of the coarse actuator. Furthermore, a new elaborate control strategy, using the global symmetry of the optical application as a supplementary overactuation capability, enhances the overall performance. The efficiency of the control scheme is validated through simulations and experiments carried on a setup realizing the optical differential delay line. The results conclude that the desired accuracy is achieved throughout the full specified bandwidth and stroke.
Aude Billard, Bernardo Fichera
Basil Duval, Christian Gabriel Theiler, Cristian Galperti, Artur Perek