Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
During early mouse development, the subtilisin-like proprotein convertases (SPC) Furin and PACE4 pattern the primitive ectoderm and visceral endoderm, presumably by activating the TGFss-related Nodal precursor. Here, mutation of the SPC motif provides direct evidence that Nodal processing is essential to specify anterior visceral endoderm and mesendoderm. Surprisingly, however, the Nodal precursor binds and activates activin receptors to maintain expression of Furin, PACE4, and Bmp4 in extraembryonic ectoderm at a distance from the Nodal source. In return, Bmp4 induces Wnt3, which amplifies Nodal expression in the epiblast and mediates induction of mesoderm. We conclude that uncleaved Nodal sustains the extraembryonic source of proprotein convertases and Bmp4 to amplify Nodal signaling in two nonredundant feedback loops with dual timescales and to localize primitive streak formation at the posterior pole. Based on mathematical modeling, we discuss how these sequential loops control cell fate.
Matthias Lütolf, Alexandre Gauthier Aurèle Mayran, Stefano Davide Vianello, Raphaël Ortiz