Publication

Herpes simplex virus immediate early infected-cell polypeptide 4 binds to DNA and promotes transcription

Peter Martin Beard
1986
Journal paper
Abstract

In herpes simplex virus (HSV)-infected cells, there is a sequential expression of viral genes. In vivo experiments have implicated the Mr 175,000 immediate early protein ICP4 (infected-cell polypeptide 4) in the regulation of viral RNA synthesis, but the mechanism whereby ICP4 regulates transcription of viral genes is at present unknown. In this report we describe experiments with an in vitro transcription system and a purified preparation of ICP4 (estimated 5% of total protein). Using DNA from the HSV glycoprotein D gene (gD) as the template, we have observed that specific binding occurs between ICP4 and DNA sequences adjacent to the gD gene promoter and ICP4 stimulates initiation of transcription from the gD gene. The degree of stimulation depends on the amount of ICP4 present in the incubation. The kinetics of RNA synthesis demonstrate that the protein acts at the initiation step of transcription. These results identify ICP4 as a viral transcription factor whose presence on DNA facilitates the formation of transcription complexes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (32)
Herpes simplex virus
Herpes simplex virus 1 and 2 (HSV-1 and HSV-2), also known by their taxonomic names Human alphaherpesvirus 1 and Human alphaherpesvirus 2, are two members of the human Herpesviridae family, a set of viruses that produce viral infections in the majority of humans. Both HSV-1 and HSV-2 are very common and contagious. They can be spread when an infected person begins shedding the virus. As of 2016, about 67% of the world population under the age of 50 had HSV-1. In the United States, about 47.8% and 11.
Transcription factor
In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The function of TFs is to regulate—turn on and off—genes in order to make sure that they are expressed in the desired cells at the right time and in the right amount throughout the life of the cell and the organism.
Transcription (biology)
Transcription is the process of copying a segment of DNA into RNA. The segments of DNA transcribed into RNA molecules that can encode proteins are said to produce messenger RNA (mRNA). Other segments of DNA are copied into RNA molecules called non-coding RNAs (ncRNAs). mRNA comprises only 1–3% of total RNA samples. Less than 2% of the human genome can be transcribed into mRNA (Human genome#Coding vs. noncoding DNA), while at least 80% of mammalian genomic DNA can be actively transcribed (in one or more types of cells), with the majority of this 80% considered to be ncRNA.
Show more
Related publications (37)

Human T-Cell Lymphotropic Virus Type 1 Transactivator Tax Exploits the XPB Subunit of TFIIH during Viral Transcription

Human T-cell lymphotropic virus type 1 (HTLV-1) Tax oncoprotein is required for viral gene expression. Tax transactivates the viral promoter by recruiting specific transcription factors but also by interfering with general transcription factors involved in ...
AMER SOC MICROBIOLOGY2020

The MIDI Degradation Toolkit: Symbolic Music Augmentation and Correction

Andrew Philip McLeod

In this paper, we introduce the MIDI Degradation Toolkit (MDTK), containing functions which take as input a musical excerpt (a set of notes with pitch, onset time, and duration), and return a ``degraded'' version of that excerpt with some error (or errors) ...
2020

Beyond silence : a functional and evolutionary study of KRAB zinc finger proteins

Pierre-Yves Joseph Laurent Helleboid

Transposable elements (TEs) are genetic units capable of spreading within the genomes of their host. TEs contribute a readily recognizable 45% of the human DNA, reflecting in part their co-option for some as source of protein-coding sequences, for others a ...
EPFL2019
Show more
Related MOOCs (11)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Genetics and Brain Development
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.