Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
A major goal of molecular oncology is to identify means to kill cells lacking p53 function. Most current cancer therapy is based on damaging cellular DNA by irradiation or chemicals. Recent reports support the notion that, in the event of DNA damage, the p53 tumour-suppressor protein is able to prevent cell death by sustaining an arrest of the cell cycle at the G2 phase. We report here that adeno-associated virus (AAV) selectively induces apoptosis in cells that lack active p53. Cells with intact p53 activity are not killed but undergo arrest in the G2 phase of the cell cycle. This arrest is characterized by an increase in p53 activity and p21 levels and by the targeted destruction of CDC25C. Neither cell killing nor arrest depends upon AAV-encoded proteins. Rather, AAV DNA, which is single-stranded with hairpin structures at both ends, elicits in cells a DNA damage response that, in the absence of active p53, leads to cell death. AAV inhibits tumour growth in mice. Thus viruses can be used to deliver DNA of unusual structure into cells to trigger a DNA damage response without damaging cellular DNA and to selectively eliminate those cells lacking p53 activity.
Daniel Constam, Benjamin Marcel Daniel Rothé, Céline Gagnieux, Simon Fortier, Céline Emmanuelle Schmuziger