Several methods and algorithms have recently been proposed that allow for the systematic evaluation of simple neuron models from intracellular or extracellular recordings. Models built in this way generate good quantitative predictions of the future activity of neurons under temporally structured current injection. It is, however, difficult to compare the advantages of various models and algorithms since each model is designed for a different set of data. Here, we report about one of the first attempts to establish a benchmark test that permits a systematic comparison of methods and performances in predicting the activity of rat cortical pyramidal neurons. We present early submissions to the benchmark test and discuss implications for the design of future tests and simple neurons models.
Henry Markram, Srikanth Ramaswamy, Werner Alfons Hilda Van Geit, Alexis Arnaudon, Maria Reva, Mustafa Anil Tuncel, Darshan Mandge, Christian Andreas Rössert, Tanguy Pierre Louis Damart
Ying Shi, Armando Romani, Michele Migliore, Maurizio Ferdinando Pezzoli, Rosanna Migliore
Eilif Benjamin Muller, Werner Alfons Hilda Van Geit, Armando Romani, Szabolcs Kali, Carmen Alina Lupascu, Rosanna Migliore, Luca Leonardo Bologna, Sàra Sàray, Shailesh Appukuttan